ANNUAL RESEARCH REPORT

Vol. 2 April 2023 - March 2024

研究成果報告書

第2巻 令和5年4月-令和6年3月

RESEARCH INSTITUTE FOR NANODEVICES HIROSHIMA UNIVERSITY

広島大学 ナノデバイス研究所

ANNUAL RESEARCH REPORT

Vol. 2 April 2023 - March 2024

研究成果報告書

第2巻 令和5年4月-令和6年3月

RESEARCH INSTITUTE FOR NANODEVICES HIROSHIMA UNIVERSITY

広島大学 ナノデバイス研究所

Preface

The Research Institute for Nanodevices (RIND), formerly known as the Center for Integrated Systems Research established in 1986 by the Ministry of Education, Culture, Sports, Science and Technology, has been engaged in semiconductor research for 37 years. Now that the importance of the semiconductor industry is being reevaluated, the institute is working on applied technologies based on semiconductor nanodevices. Until 2023, the institute consisted of four research divisions: "Nano-Integration Research Division," "Integrated Systems Research Division," "Molecular Bioinformation Research Division," and "Nanomedicine Research Division." This year the new institute will be reorganized as the Research Institute for Semiconductor Engineering (RISE) and consist of the "Semiconductor Strategy Research Division," "Nanodevice Research Division," "Interdisciplinary Research Division," and "Research Support and Equipment Management Office." The institute will formulate its own semiconductor research strategy and conduct research based on this strategy. Over the next several years, the institute will be engaged in semiconductor research and human resource development.

We continue to promote the "Research Center for Biomedical Engineering (RCBE)" as a MEXT Joint Usage/Research Center and the "Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)" as a MEXT project. RCBE entered its second phase in FY2022. The center aims to promote advanced collaborative research in the field of biomedical engineering and to promote the practical application of biomaterials, medical devices, and medical systems in Japan by fusing the functions of the Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Research Institute of Electronics, Shizuoka University, and the Research Institute for Nanodevices, Hiroshima University.

The ARIM project is a 10-year project that began in FY2021. In addition to shared use of state-of-the-art equipment and technical support by highly specialized engineers, new remote, automated, and high-throughput advanced equipment will be introduced, and material data generated from the equipment usage will be structured and provided in a way that makes it easy to utilize. Using a super clean room with a total area of 830 m², the support will focus on energy conversion materials, including not only Si but also wide-gap semiconductors such as SiC and GaN, and high-performance solar cells. Through these supports, we will promote the establishment of a system that enables the collection, accumulation, distribution, and utilization of high-quality material data.

In addition, the project was adopted as the "Integrated Green-niX research and human resource development (Green-niX)" by MEXT in the "NeXt-generation Novel Integrated Circuits CenterS (X-NICS) Project" that started in FY2022, by Tokyo Institute of Technology, Toyohashi University of Technology and Hiroshima University. We contribute to the future of the semiconductor industry through research, development, and human resource development.

In March 2023, we launched the "Setouchi Semiconductor Consortium" with the Institute as the core, thirteen companies and three public organizations as members. We intend to work together with industry, government, and academia to develop human resources and conduct research and development related to semiconductors. As of June 2024, the number of participating companies have been increased to twenty-three, and Kobe University has been joined the program, further developing the program.

In March 2023, construction of the J-Innovation HUB Building (new building) was completed. In the building, analysis and evaluation equipment for semiconductor research and facilities for research and development of AI and communication technologies were introduced. The new building will be used in conjunction with the Institute's super clean room to further advance semiconductor research and development. In addition, an open space has been established on the first floor of the new building where all related parties can freely gather. We intend to make it a place where researchers and engineers in semiconductor-related fields can actively exchange opinions, and as the center of the Setouchi Semiconductor Consortium activities, we intend to utilize the space for research and human resource development activities, thereby contributing to the revitalization of local industry.

This annual report offers comprehensive information about the recent research activities and achievements at the RIND to those who are engaged in the fields of advanced technologies. We hope this report will contribute to the mutual exchange of ideas and future progress of the researches on advanced integration of nanodevice and bio systems.

akinden Teromoto Akinobu Teramoto

Director Research Institute for Semiconductor Enginnering,

July 1, 2024

Hiroshima University, Japan

卷頭言

ナノデバイス研究所は1986年文科省令により設立された集積化システム研究センターを前身として、半導体研究を37年間に渡り続けてまいりました。半導体産業の重要性が再び見直されている現在、半導体ナノデバイスに 基盤を据え、その応用技術に取り組んでおります。 ナノデバイス研究所は2023年度までは、「ナノ集積科学」、 「集積システム」、「分子生命情報科学」、「集積医科学」の4つの研究部門で構成されていました。2024年度から は、半導体産業技術研究所に改組して「半導体戦略研究部門」、「ナノデバイス研究部門」、「異分野融合研究部 門」及び「研究支援・設備運営室」で構成されます。研究所自ら半導体研究戦略を策定し、それに基づいて 研究を実施していく体制です。数年間かけて、研究所を拡大し、半導体研究と人材育成に取り組んで参り ます。

本研究所は、文部科学省共同利用・共同研究拠点としての「生体医歯工学研究拠点」および文部科学省事業 である「マテリアル先端リサーチインフラ事業(ARIM)」を引き続き推進しています。生体医歯工学研究拠点は、 2022年度から第2期目に入りました。東京医科歯科大学生体材料工学研究所、東京工業大学未来産業技術研 究所、静岡大学電子工学研究所、そして広島大学ナノデバイス研究所の連携研究機関の機能融合により、生体 医歯工分野の先進的共同研究を推進し、我が国の生体材料、医療用デバイス、医療システムなどの実用化を促 進する拠点形成を目的として活動しています。

ARIM事業は2021年度から10年間の事業であり、最先端装置の共用、高度専門技術者による技術支援に加え、 新たにリモート・自動化・ハイスループット対応型の先端設備を導入し、装置利用に伴い創出されるマテリアルデ ータを、利活用しやすいよう構造化した上で提供するための事業です。本研究所の特徴である総面積830m²のス ーパークリーンルームを利用して、Siのみならず、SiCやGaN等のワイドギャップ半導体、高性能太陽電池など、エ ネルギー変換マテリアルにフォーカスした研究開発・支援を行います。これらの支援を通じて、高品質マテリアル データを収集・蓄積・流通・利活用できる仕組みの構築を推進していきます。

さらに、2022年度から開始された文部科学省「次世代X-nics半導体創生拠点形成事業」では、東京工業大学を中心として、豊橋技術科学大学とともに、「集積Green-niX研究・人材育成拠点」として採択されました。2022年度から10年間の事業で、半導体関連産業の未来のために「Green化」の観点を意識して、研究・開発と人材育成で貢献していきたいと考えています。

2023年3月には、本研究所を中心として、関連企業13社、広島県、東広島市、中国経済産業局をメンバーとして「せとうち半導体共創コンソーシアム」を立ち上げました。半導体関連の人材育成と研究開発を産官学連携で取り組んで参りたいと考えております。2024年6月には参画企業数が23社になり、神戸大学にも参画していただくことになり、さらに発展を続けています。

2021年3月には、経済産業省「産学連携推進事業費補助金(地域の中核大学の産学融合拠点の整備)」に 採択され、2023年3月には、Jイノベ棟(新棟)が竣工しました。棟内には、半導体研究のための分析、評価機器、 AIや通信技術の研究開発のための設備を導入しました。これにより、本研究所のスーパークリーンルームと合わ せて利用することにより、半導体研究・開発をよりいっそう進展させていきます。さらに、新棟1階には、関連各位 が自由に集うことのできるオープンスペースを開設しました。半導体関連分野の研究者・技術者が活発に意見交 換できる場所にしていくとともに、せとうち半導体コンソーシアム活動の中心として、研究・人材育成活動に活用し、 地域産業の活性化にも寄与していきたいと考えています。

アニュアルリサーチレポートはナノデバイス研究所の最近1年間の研究活動と研究成果の一端をまとめて、先端技術の研究・教育に携わる方々に最新情報を共有していただくために発行しています。このレポートが今後ともこの分野での研究交流の一助になれば幸いです。

2024年7月1日

広島大学 半導体産業技術研究所 所長 寺本 章伸

CONTENTS

Preface

1	Organization of Research Institute for Nanodevices (RIND)	1
2	Staff of RIND	2
3	Executive Committee Members of RIND	9
4	Research Divisions of RIND	10
	4.1 Nanointegration Research Division	11
	4.2 Integrated Systems Research Division	19
	4.3 Molecular Bioinformation Research Division	22
	4.4 Nanomedicine Research Division	24
5	Research Facilities of RIND	26
	5.1 Super clean rooms	26
	5.2 Equipment for advanced devices and LSI fabrication	27
	5.3 Characterization and diagnostics equipment	33
	5.4 VLSI CAD environment	37
6	List of Publications	39
	6.1 Advanced device, process, and material technologies for ULSI	39
	6.2 Technologies for intelligent systems	44
		10
	6.3 Bioscience and technology	49

1. Organization of Research Institute for Nanodevices (RIND)

ナノデバイス研究所組織

2. Staff of Research Institute for Nanodevices (RIND)

ナノデバイス研究所構成員 (2024年3月31日時点)

Nanointegration Research Division

ナノ集積科学研究部門

Akinobu Teramoto	Director of RNBS and Professor
寺本 章伸	研究所長, 教授
Shin-Ichiro Kuroki	Associate Director and Professor
黒木 伸一郎	副研究所長, 教授
Hideki Gotoh	Professor
後藤 秀樹	教授
Takamaro Kikkawa	Professor (Special Appointment)
吉川 公麿	特任教授
Seiichiro Higashi	Professor
東 清一郎	教授(併任)
Shuhei Amakawa	Professor
天川 修平	教授(併任)
Atsushi Ikeda	Professor
池田 篤志	教授(併任)
Manabu Shimada	Professor
島田 学	教授(併任)
Anri Nakajima	Associate Professor
中島 安理	准教授
Hiroaki Hanafusa	Associate Professor
花房 宏明	准教授(併任)
Tetsuo Tabei	Associate Professor (Special Appointment)
田部井 哲夫	特任准教授
Vuong Van Cuong	Assistant Professor (Special Appointment)
ヴォーン ヴァン クォン	特任助教
Tomomi Ishikawa	Assistant Professor (Special Appointment)
石川 智己	特任助教
Yoshiteru Amemiya	Assistant Professor (Special Appointment)
雨宮 嘉照	特任助教

Integrated Systems Research Division

集積システム科学研究部門

Suguru Kameda	Professor
亀田 卓	教授
Minoru Fujishima	Professor
藤島 実	教授(併任)
Idaku Ishii	Professor
石井 抱	教授(併任)
Kazufumi Kaneda	Professor
金田 和文	教授(併任)
Takeshi Takaki	Professor
高木 健	教授(併任)
Tetsushi Koide	Associate Professor
小出 哲士	准教授
Tsuyoshi Yoshida	Associate Professor
吉田 毅	准教授(併任)
Mamoru Sasaki	Associate Professor
佐々木 守	准教授(併任)

Molecular Bio-information Research Division

分子生命情報科学研究部門

Masakazu Iwasaka	Professor
岩坂 正和	教授
Akio Kuroda	Professor
黒田 章夫	教授(併任)
Seiji Kawamoto	Professor
河本 正次	教授(併任)
Takeshi Ikeda	Associate Professor
池田 丈	准教授(併任)

Nanomedicine Research Division

集積医科学研究部門

Hiroki Nikawa	Professor
二川 浩樹	教授(併任)
Koichi Kato	Associate Director and Professor
加藤 功一	副研究所長, 教授(併任)
Kazuhiro Tsuga	Professor
津賀 一弘	教授(併任)
Kouji Arihiro	Professor
有廣 光司	教授(併任)
Morihito Okada	Professor
岡田 守人	教授(併任)
Mikihito Kajiya	Professor
加治屋 幹人	教授(併任)
Wataru Nomura	Professor
野村 涉	教授(併任)
Yuhki Yanase	Associate Professor
柳瀬 雄輝	准教授(併任)

Advanced Research Infrastructure for Materials and Nanotechnology (ARIM)

マテリアル先端リサーチインフラ

Shin-Ichiro Kuroki	Professor
黒木 伸一郎	教授
Tetsuo Tabei	Associate Professor (Special Appointment)
田部井 哲夫	特任准教授

Specially Appointed Professor

特命教授

Takashi Imaoka 今岡 孝之 Specially Appointed Professor 特命教授

Nahomi Aoto 青砥 なほみ Specially Appointed Professor

特命教授

Visiting Professor

客員教授

Shin Yokoyama	Visiting Professor
横山 新	客員教授
Yuji Miyahara	Visiting Professor
宮原 裕二	客員教授
Seiichi Miyazaki	Visiting Professor
宮崎 誠一	客員教授
Ryo Miyake	Visiting Professor
三宅 亮	客員教授
Shigeto Yoshida	Visiting Professor
吉田 成人	客員教授
Yasuyuki Shirai	Visiting Professor
白井 泰雪	客員教授
Yumi Aoyama	Visiting Professor
青山 裕美	客員教授
Xia Xiao	Visiting Professor
肖 夏	客員教授
Katia Zheleva Vutova	Visiting Professor 客員教授
Carl-Mikael Zetterling	Visiting Professor 客員教授
Hideki Murakami	Visiting Professor
村上 秀樹	客員教授
Hiroshi Oguma	Visiting Professor
小熊 博	客員教授
Kazuhito Matsukawa	Visiting Professor
松川 和人	客員教授
Declan O'Loughlin	Visiting Lecturer 客員講師
Hang Song	Visiting Lecturer
宗 航	客員講師

Researcher

研究員

Kyouji Mizuno	Researcher, ARIM
水野 恭司	マテリアル先端リサーチインフラ研究員
Hiroki Sakamoto	Researcher, ARIM
坂本 弘樹	マテリアル先端リサーチインフラ研究員
Tatsuya Meguro	Researcher
目黒 達也	研究員
Junichi Tsuchimoto	Researcher
土本 淳一	研究員
Alam Md Iftekharul	Researcher 研究員
Shinji Yamada	Research Coordination Staff
山田 真司	教育研究推進員(マテリアル先端リサーチインフラ)
Kazushi Okada	Research Supporting Staff
岡田 和志	教育研究補助職員(マテリアル先端リサーチインフラ)
Junko Hinohara	Research Supporting Staff
樋原 純子	教育研究補助職員(マテリアル先端リサーチインフラ)
Nobumasa Arai	Research Supporting Staff
新井 信正	教育研究補助職員
Tomomi Hirono	Research Supporting Staff
廣野 友美	教育研究補助職員
Mami Hosoba	Research Supporting Staff
細羽 真美	教育研究補助職員
Akira Maruyama	Research Supporting Staff
丸山 明	教育研究補助職員
Yutaka Wakamiya	Research Supporting Staff
若宮 豊	教育研究補助職員

Visiting Researcher

客員研究員

Hiroshi Sezaki 瀬崎 洋	Visiting Scientist, Phenitec Semiconductor Corporation 客員研究員, フェニテックセミコンダクター(株)
Seiji Ishikawa	Visiting Scientist, Phenitec Semiconductor Corporation
石川 誠治	客員研究員, フェニテックセミコンダクター(株)
Tomonori Maeda	Visiting Scientist, Phenitec Semiconductor Corporation
前田 知徳	客員研究員, フェニテックセミコンダクター(株)
Jun Kamata	Visiting Scientist, Mitsui Chemicals Incorporated
鎌田 潤	客員研究員, 三井化学(株)
Yasuhisa Kayaba	Visiting Scientist, Mitsui Chemicals Incorporated
茅場 靖剛	客員研究員, 三井化学(株)
Takeshi Kumaki 熊木 武志	Visiting Scientist, Department of VLSI System Design, College of Science & Enginnering, Ritsumeikan University 客員研究員,立命館大学理工学部電子情報デザイン学科
Kenji Sakamoto	Visiting Scientist, Center for Microelectronic System, Kyusyu Institute of Technology
坂本 憲児	客員研究員, 九州工業大学マイクロ化総合技術センター
Hiromasa Watanabe	Visiting Scientist, S-Takaya Electronics Industry Corporation
渡邉 礼方	客員研究員, エスタカヤ電子工業(株)
Atsushi Iwata	Visiting Scientist, A-R-Tec Corporation
岩田 穆	客員研究員, (株)エイアールテック
Yositaka Murasaka	Visiting Scientist, A-R-Tec Corporation
村坂 佳隆	客員研究員, (株)エイアールテック
Toshifumi Imamura	Visiting Scientist, A-R-Tec Corporation
今村 俊文	客員研究員, (株)エイアールテック
Tomoaki Maeda	Visiting Scientist, A-R-Tec Corporation
前田 智晃	客員研究員, (株)エイアールテック
Masahiro Ono	Visiting Scientist, A-R-Tec Corporation
小野 将寛	客員研究員, (株)エイアールテック
Kazuyoshi Nishino	Visiting Scientist, Shimadzu Corporation
西野 和義	客員研究員, (株)島津製作所
Odagawa Masayuki	Visiting Scientist, Cadence Design Systems, Japan
小田川 真之	客員研究員, 日本ケイデンス・デザイン・システムズ社

Supporting Staff

支援スタッフ Souichi Daigo 太呉 壮一

Tarou Suehiro 末広 太朗

Kenji Fujii 藤井 謙二 副グループリーダー Chief (General Affairs)

Assistant Chief Manager

主査(総務担当)

Chief Manager

グループリーダー

Kazuhiko Hasegawa 長谷川 和彦 Chief (Administrative Affairs) 主查(事務担当)

Chiaki Ashihara 葦原 千秋

Naoko Nakatani 中谷 尚子

Izuko Kushida 串田 何子

Kumiko Mitani 三谷 久美子

Aki Maki 牧 亜紀 事務補佐員

Office Assistant

Office Assistant 事務補佐員

Office Assistant 事務補佐員

Office Assistant 事務補佐員

Office Assistant 事務補佐員

3. Executive Committee Members of Research Institute for Nanodevices (RIND)

ナノデバイス研究所運営委員会委員

Director and Professor	RIND
研究所長·教授	ナノデバイス研究所
Associate Director and Professor 副研究所長・教授	RIND ナノデバイス研究所
Associate Director and Professor 副研究所長・教授	Graduate School of Biomedical and Health Sciences 医系科学研究科(歯)
Professor	RIND
教授	ナノデバイス研究所
Professor	RIND
教授	ナノデバイス研究所
Professor	RIND
教授	ナノデバイス研究所
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Integrated Sciences for Life
教授	統合生命科学研究科
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Advanced Sciences and Engineering
教授	先進理工系科学研究科
Professor	Graduate School of Biomedical and Health Sciences
教授	医系科学研究科(歯)
Associate Professor	RIND
准教授	ナノデバイス研究所
Associate Professor	RIND
准教授	ナノデバイス研究所
Associate Professor	Graduate School of Advanced Sciences and Engineering
准教授	先進理工系科学研究科
	Director and Professor 研究所長・教授Associate Director and Professor 副研究所長・教授Associate Director and Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor 教授Professor

4. Research Divisions of Research Institute for Nanodevices (RIND) ナノデバイス研究所の研究領域

The Research Institute for Nanodevices was founded on April 1, 2022, and researches the fundamental technologies necessary to achieve global excellence in electronic and bio integrated sciences for preventive medicine and ubiquitous diagnoses on early stages of illnesses in the future advanced medical-care society beyond the present information society. The research field includes Nanointegration, Integrated Systems, Molecular Bioinformation and Nanomedicine.

ナノデバイス研究所は情報化社会の先にある高度医療保障社会に向けた、予防医学やユビキタ ス病気早期診断を実現するためのエレクトロニクスとバイオテクノロジーの集積科学基盤技術を開発 するグローバルな教育研究拠点を構築することを目的として研究を行っている。研究領域はナノ集 積科学、集積システム科学、分子生命情報科学、集積医科学の4つからなる。

研究領域

4.1 Nanointegration Research Division

ナノ集積科学研究部門

At the Nanointegration Research Division we focus the research on nanodevices, fabrication processes, nanointegration, nano-bio integration devices, photonic devices, nano-quantum devices, thin film devices, nanodevice modeling and functional materials. The outlines of researches at the Nanointegration Research Division are as follows.

ナノ集積科学研究部門では、ナノデバイス、プロセス、ナノインテグレーション、ナノバイオ融合デバイス、フォトニック デバイス、ナノ量子デバイス、薄膜デバイス、ナノデバイスモデリング、機能性材料等に関する研究を行っている。ナノ 集積科学研究部門における研究の主なものの概要を紹介する。

従来のプリカーサに比べて100倍の蒸気圧を持つTRuST[®] と O₂による原子層成長(ALD)を行っている。他のプリカー サを用いるのに比べ、250℃という比較的低温において、 高い成膜レートを有し、低抵抗の Ru を成膜できるようにな りました。

Atomic layer deposition (ALD) with TRuST[®] and O_2 has been studied. TRuST[®] has a vapor pressure 100 times higher than that of conventional precursors. Compared to the use of other precursors, it is now possible to deposit Ru with high deposition rate and low resistivity at the relatively low temperature of 250°C.

ALD で成膜した Ru の成膜レート(GPC)と抵抗率の関係。 他の研究に比べ、高い GPC で低抵抗を実現している。 Relationship between deposition rate (GPC) and resistivity of Ru films deposited by ALD. Lower resistivity is achieved at higher GPC compared to other studies.

Magnetic Tunnel Junction (MTJ)のスイッチング特性について、スイッチングにおける電圧パルス幅を狭くしてくと高抵抗と低抵抗の間に中間状態が現れ、これを防ぐためには高電圧が必要であることがわかってきました。

It has been found that a high voltage is necessary to suppress an intermediate state between high and low resistance from appearing when the switching voltage pulse width is narrowed for magnetic tunnel junction (MTJ) switching characteristics.

実験に用いた MTJ の構造(a)と書き換え電圧に対する 抵抗(b)変化および読み出し電圧(0.02V)時の抵抗(c)。 上からスイッチングパルスは 50µs、1µs、400ns。 Structure of the MTJ employed in this experiment (a), resistance to switching voltage (b) and resistance at read voltage (0.02V) (c). Switching pulses was varied from top to bottom are 50µs, 1µs, and 400ns.

閾値変化可能なフローティングゲート型 GaN HEMT Threshold changeable floating-gate GaN HEMTs 教授 寺本章伸 Prof. A. Teramoto

フローティングゲートを GaN HEMT (High Electron Mobility Transistor) に導入し、その閾値を変化できるようにしています。ゲート絶縁膜のみならず、層間絶縁膜の品質、特にキャリアトラップ特性がデバイス特性に大きな影響を及ぼすことがわかってきました。

Floating gates are introduced into GaN HEMTs (High Electron Mobility Transistors) to control their thresholds. It has been found that the quality of not only the gate dielectric but also the interlayer dielectric, especially the carrier trapping characteristics, has a significant impact on device characteristics.

フローティングゲート型 GaN HEMT の構造(a)と程度レイン 電流を流した時間に対するドレイン電圧の変化量。層間絶 縁膜の品質により,その変化量が大きく異なる。マイクロ波励 起の PECVD で成膜した高品質な SiO2 膜を用いると電圧 変化が発生しにくい。

Structure of a floating-gate GaN HEMT (a) and the change in drain voltage with respect to the time when the drain current is applied (b). The change in the drain voltage varies greatly depending on the quality of the interlayer dielectric. High quality SiO_2 film deposited by PECVD with microwave excitation is less likely to cause voltage change.

ゾルゲル法による MoS2 成膜 MoS2 film formation by Sol-Gel method 教授 寺本章伸

Prof. A. Teramoto

2次元材料として期待されている MoS₂ をゾルゲル法によ り成膜しています。(NH4)₂MoS₄ を溶媒に溶かして塗布した 後、アニールして MoS₂ を成膜する。下地材料として SiO₂ を用いるより SiN 膜を用いる方が高品質な MoS₂ が形成で きることがわかりました。

 MoS_2 , which is expected to be a 2D material, is formed by a sol-gel method. MoS_2 is deposited by dissolving $(NH_4)_2MoS_4$ in a solvent, coating it, and then annealing it. It was found that high-quality MoS_2 can be formed by using a SiN film rather than SiO₂ as a substrate material.

SiO₂上に成膜した $MoS_2 \& SiN$ 上に成膜した $MoS_2 o T = - \mu$ 後の AMF 像。SiO₂上では 600℃から凹凸が現れる。これ は、界面で Mo の酸化物ができることによる。SiN 上では界面 での酸化が発生せず、高品質な MoS_2 が形成できる。

AMF images of MoS_2 formed on SiO_2 and SiN after annealing. On SiN, no oxidation occurs at the interface, and high-quality MoS_2 can be formed.

シリコンカーバイド(SiC)半導体を用いた極限環境用集積 回路の研究を進めている。4H-SiC CMOS 集積回路の研究 を進めた。特に SiC SRAM の特性評価などを進め、本成果 はイタリア・ソレントで開催されたICSCRM2023などで発表し た。本研究は産総研、量研機構、スウェーデン王立工科大 との共同研究として進めている。

Research on SiC harsh environment electronics has been carried out. 4H-SiC CMOS circuits were fabricated and demonstrated. This research is carried out under the collaboration with AIST QST, KTH Royal Institute of Technology, Sweden.

4H-SiC SRAM とその 500℃動作 4H-SiC SRAM Circuits and its 500 ℃ operation

フル SIC 耐放射線 UV イメージセンサの 研究 Radiation-Hardened Full-SiC UV Pixel Devices 教授 黒木伸一郎

Prof. Shin-Ichiro Kuroki

今後のデブリ取り出しなどを見据え、フォトダイオードも SiC で作製したフル SiC UV(紫外光)イメージセンサを提案し、実証研究を進めている。64 画素イメージセンサ動作を実証し、また周辺回路としてサンプル・アンド・ホールド回路などの研究を進めた。本成果はイタリア・ソレントで開催された ICSCRM2023 などで発表した。

本研究は産総研、量研機構との共同研究として進めている。

Full SiC pixel devices for a radiation hardened UV image sensors had been demonstrated. These results were reported at ICSCRM2023, held in Sorrento, Italy. This research has been carried out under the collaboration with AIST and QST, Japan.

SiC CMOS イメージセンサのための サンプル・アンド・ホールド回路 4H-SiC Sample-and-Hold circuits

シリコンカーバイド極限環境エレクトロニ クス: 超高温用集積回路 SiC Integrated Circuits for High-Temperature Applications

教授 黒木伸一郎 Prof. Shin-Ichiro Kuroki

シリコンカーバイド(SiC)半導体を用いた極限環境用集積 回路の研究を進めている。プリアンプ回路の研究を進め、 500℃駆動および信頼性評価を進めた。本成果はイタリ ア・ソレントで開催された ICSCRM2023 などで発表した。本 研究はフェニテックセミコンダクター(株)との共同研究とし て進めている。

4H-SiC pre-amplifier circuits for high-temperature application were investigated. 500°C operation and the reliability at high temperature have been investigated. This research is carried out under the collaboration with Phenitec Semiconductor Co. Ltd., Japan.

SiC MOSFET 増幅器 Single stage amplifier based on 4H-SiC MOSFET: (a) Schematic, (b) mask layout, and (c) optical image

Si カンチレバー構造作製プロセスの研究 Fabrication method of Si cantilever structures for MEMS sensors

教授 黒木伸一郎 Prof. Shin-Ichiro Kuroki

SOI 基板を用いた Si カンチレバー構造作製の研究を行いました。この成果は IEEE J. Microelectromechanical Systems 誌などで発表しました。本研究はインドネシア国立研究革新庁(BRIN)および静岡大学との共同研究として進めている。

New fabrication method of Si cantilever using SOI wafer has been investigated for MEMS sensors. The results were reported at IEEE J. Microelectromechanical Systems.

This research has been carried out under the collaboration with National Research and Innovation Agency (BRIN), Indonesia, and Shizuoka University.

作製した Si カンチレバーセンサの電子顕微鏡写真 Fabricated Si cantilever structure

化合物半導体における電子スピンが 関連する光学物性の研究 Electron-spin related optical properties in compound semiconductors 教授後藤秀樹 Prof. Hideki Gotoh

省エネルギーで動作する情報処理デバイスの実現をめざ し、半導体における電子スピンの物性を解明している。スピン 状態を精密に評価するために、光を用いた空間イメージング を可能とした。この手法を用いて、重い元素 Bi を添加した化 合物半導体でのスピン効果が増大することを見出した。

To create IT devices with low energy consumption, electron-spin related optical properties have been studied in semiconductors. We have found enhanced spin properties in compound semiconductors including heavy atom (Bi) with a spatial imaging system developed to detect spin states.

新しい3次元ナノ構造の形成と光学新機能の発現が期待 できる半導体ナノワイヤの作製と、デバイス機能の研究を 行っている。ナノワイヤを用いた発光ダイオードの特性と、 作製プロセスとの関係を調べ、発光特性の向上技術を実 現した。

Fabrication technique and device functions of semiconductor NWs have been studied expecting novel threedimensional nano-structures and useful optical functions. We have examined the relationship between characteristics of LED with NWs and its fabrication process, achieved technology to improve optical properties of LED.

半導体表面でスピンをイメージングした結果。スピンが時間と ともに上向きと下向きの間で変化し、外部磁場なしで回転運 動を行っている。

Spatial imaging of spins in a semiconductor surface. Spins precess with time evolutions without any external magnetic fields .

ヘテロ構造を持つ半導体ナノワイヤの電子顕微鏡写真。ヘ テロ構造は InP/InAs で形成する。

Scanning electron microscope (SEM) photographs of semiconductor NWs with hero-structures. The hetero-structures are composed of InP/InAs.

マイクロ波イメージング乳がん検出技術 Breast Cancer Detection Using Microwave Imaging

特任教授 吉川公麿 Professor Takamaro Kikkawa

マイクロ波共焦点画像相互相関法を開発した。広島大学病院にて乳がんの検出能を評価した50例の感度は72%であった。本研究は、広島大学病院、東京工業大学、天津大学、トリニティカレッジダブリンとの共同研究の成果として IEEE Trans. Bio. Med. Eng. (IF:4.756)に掲載された。

A portable microwave imaging device was developed and a clinical test was conducted at Hiroshima University Hospital. The average sensitivity of 50 cases was 72%. This work was the collaborative research among Hiroshima University Hospital, Tokyo Institute of Technology, Tianjin University and Trinity College Dublin. The paper was published in IEEE Trans. Bio. Med. Eng. (IF:4.756).

- 14 -

光学干渉非接触温度測定法(OICT)による Si MOSFET 自己発熱温度の可視化技術 3-D Imaging of Si MOSFET Temperature Distribution under Operation by Optical Interference Contactless Thermometry (OICT) 教授東清一郎(併任) Prof. S. Higashi

Si MOSFET 動作時の自己発熱による内部温度の可視化 に光学干渉非接触温度測定法(OICT)を適用する技術を開 発した。赤外レーザーを裏面から照射し、反射光強度分布を ハイスピードカメラで観測したところ明瞭な干渉像が得られ、 デバイス内部温度分布を可視化できることが分かった。

Optical Interference Contactless Thermometry (OICT) has been applied to visualize temperature distribution inside Si MOSFET under operation. An IR laser beam was irradiated to the device from the backside and the reflected light intensity was observed by a high-speed camera. Clear interference fringes indicate the capability of visualizing the temperature distribution inside the device.

Vds = 120 V, t = 0.1 s

Si nMOSFET 動作の概略(左)と、OICT システムにより観察され た干渉縞分布(右).

A schematic of an Si nMOSFET (left) and observed fringes during device operation by OICT system (right).

ナノ物質の堆積による材料創製と表面汚染 Material Fabrication and Surface Contamination by Deposition of Nanoobjects

教授 島田 学(併任) Prof. M. Shimada

ナノサイズのクラスター・粒子状物質を合成し、ガス中に 浮遊、堆積させて、有用な構造・組成をもつ薄膜、粒子、 およびそれらの複合物を創製する研究を行っている。ナ ノサイズ物質が汚染物質として表面付着したときの影響も 検討している。

Preparation of thin-films, particles, and their composites having useful structure and composition is being studied by synthesizing nano-sized clusters and particulate matter suspended in gases and depositing them in the gas phase. The effects of surface deposition of nanoobjects as contaminants are also being investigated.

液原料噴霧とプラズマ CVD を組み合わせた複合ナノ粒子のワ ンステップ気相合成; (a), (b): TiO,と ZnO のナノ結晶を表面に 析出させたカーボンナノチューブの電子顕微鏡写真; (c): エネ ルギー分散型 X 線分光法による複合物質の元素同定結果

A one-step gas-phase synthesis of composite nanoparticles combining liquid precursor spraying and plasma-enhanced chemical vapor deposition; (a), (b): Electron microscope images of carbon nanotubes with surface-deposited nano-crystals of TiO_2 and ZnO; (c): Elemental identification results of the composite material by energy-dispersive X-ray spectroscopy

天然高分子による疎水性化合物の水溶化 Water-solubilization of hydrophobic compounds using natural polymers

教授 池田篤志(併任) Prof. Atsushi Ikeda

我々は多糖やポリペプチドを可溶化剤として用いて疎水 性の機能性化合物を水溶化することに成功した。これらの 複合体を用いて、薬剤や機能性材料の開発を目指す。

We succeeded the water-solubilization of hydrophobic functional compounds using polysaccharides or polypeptides as solubilizing agents. Using these complexes, we develop drugs and functional materials.

機能性分子-天然高分子複合体の模式図 Schematic illustration of functional compound-natural polymer complexes

有機ナノデバイスのための電気伝導性 フラーレン混合有機レジスト Fullerene-containing electrically conducting electron beam resist for organic nanodevices 准教授 中島安理 Associate professor Anri Nakajima

簡便に高集積有機ナノサイズデバイスを作製するため に、有機電子線レジストにフレーレンを混合した材料を開 発しています。電気伝導性の有機ナノドットや有機ナノワイ ヤ構造を電子線露光と現像のみのプロセスで作製できま す。

Fullerene-incorporated electron beam (EB) organic resists are developed to realize high integration of nanometer lateral-scale organic electronic devices. The structures of nanoscale dots and nanowires having electrical conductivity are able to be fabricated with a simple fabrication process of only EB exposure and development.

⊠ ZEP520A と PCBM. Fig. ZEP520A and PCBM.

図 ナノスケールドットとナノ ワイヤ構造の SEM 像. Fig. SEM micrographs of nanoscale dots and nanowires.

Fig. C-V characteristics.

図 ナノワイヤ構造の透過電子顕 微鏡像とフラーレンの分布. Fig. TEM micrograph of nanowire and PCBM distribution.

ナノスケール有機 EL デバイスのための Alq₃ 混合電子線レジスト Alq₃-Containing Electron Beam Resists Nanometer-Scale for Organic EL Devices 准教授 中島安理 Associate professor. Anri Nakajima

電子線レジストに導電性の発光性有機分子を混合する 事により、露光と現像のみの簡単なプロセスを用いて、ナノ メータースケールで基板面内方向のサイズと位置を制御し た有機EIデバイスを実現するための技術を開発してます。

A simple method only using electron beam (EB) exposure and development is developed for fabricating currentdrivable light-emitting organic devices with lateral sizes and positions on the nanometer scale. The method uses light emitting molecule-incorporated EB organic resists.

Alq₃ 混合電子線レジストの(a)薄膜の SEM 像、(b)電子線露光及び 現像後のドット構造発光層の光学顕微鏡像、(c)薄膜構造からのエ レクトロルミネッセンス(EL)、(d)ナノサイズ有機 EL デバイスの概観 (a) SEM image of a thin film, (b)optical microscopy image of dot structure after electron beam exposures and development, (c) electroluminescence (EL) from a thin film, (d) schematic image of a nanosize EL device. These structures use Alq₃-containing EB resist.

ポータブル型ウイルス罹患検査デバイス の研究 Research on Portable Virus Testing Device 准教授 花房宏明(併任) Assoc. Prof. Hiroaki Hanafusa

迅速・高信頼性のポータブル型ウイルス罹患検査デバイ ス・MCM (Micro-Chamber-Matrix) 形センサの研究を展 開してる。オンライン診療において信頼性の高いデータを 医療者に提供する。

We are studying virus testing device "MCM" having portability, high-speed, and high-accuracy. The system will provide reliable data to physician in online medical care.

MCM を用いた「あらゆる場所でウイルス罹患検査ができる」システムの使用イメージ Usage image of the MCM system which realize virus testing everywhere.

トンネル電界効果トランジスタを用いた極 低電圧シリコン光変調器の研究 Ultralow drive voltage Si optical modulator utilizing tunnel field-effect transistors 特任准教授 田部井哲夫 Special Appointment Associate Professor

トンネルトランジスタを利用した、極低電圧駆動シリコンマ ッハーツェンダー(MZ)光変調器の研究を行っている。MZ 変 調器は光導波路、位相変調器等の複数の素子で構成され る。提案する光変調器が適切に動作するように、光導波路 シミュレータを活用して各素子の最適化を実施している。

We study an ultralow drive voltage silicon Mach-Zehnder modulator (MZM) utilizing tunnel field-effect transistors. The MZM is composed of multiple elements such as optical waveguides, phase modulators and so on. To ensure that the proposed optical modulator works properly, we utilize an optical waveguide simulator to optimize each element.

シリコンマッハ・ツェンダー光変調器による光変調のシミュレーション Simulation results of optical modulation using silicon Mach-Zehnder optical modulator.

極限環境用 4H-SiC 電子回路の研究 Electronic Circuits Based on 4H-SiC for Harsh Environment Applications

特任助教 ヴォーン ヴァン クォン Specially Appointed Assist. Prof. Vuong Van Cuong

高温・高放射線環境下用途の SiC 集積回路について、 作製工程、デバイス技術、設計、信頼性などの研究を行っ ている。

My current research topic is SiC integrated electronic circuits for high temperature and high radiation environment applications, including fabrication process and device technologies, design, and reliabilities.

HH-SiC MOSFET 差動増幅器 (a)マスクレイアウト (b)光学顕微鏡 像 (c)500°Cでの動作特性 (d)増幅特性 (e)400°Cでの再現性 Differential Amplifier based on 4H-SiC MOSFET with (a) mask layout, (b) optical image, operation at 500°C of (c) 4H-SiC MOSFET, (d) amplifier, and (e) reliability at 400°C

散乱トモグラフィアルゴリズムの研究 Scattering Tomography Algorithm

助教 石川智己(特任) Assist. Prof. Tomomi Ishikawa

計算トモグラフィ、特にマイクロ波トモグラフィ(MWT)に関 する方法論の研究を行なっている。MWT では電磁波の散 乱データから逆散乱問題を解くことにより対象物体の形 状・電気的性質を得るが、その非侵襲性から医療分野等 の応用が期待される。そのための計算アルゴリズムの開発 や計算の高速化、並びに実用性の検証を行っている。

We study computed tomography, particularly microwave tomography and its associated computing methods. Our research involves the development of algorithms and software for tomographic imaging, as well as testing its practicality in the medical application.

GaN-LED の異種基板上への接合技術 Binding technology of GaN-LED for Heterogeneous Integration

助教 雨宮嘉照(特任) Assist.Prof.Y.Amemiya

GaN-LED を異種基板上に集積化することを目的として、 常温大気圧下で石英基板等に接合する技術の研究を行っている。40µm×100µm 素子の接合には成功しており、 母材基板での特性から劣化していないことを確認してい る。より微細な素子の接合についても検討している。

We are studying binding technology of GAN-LED on quartz substrate etc. under room temperature and atmospheric pressure for heterogeneous integration. The bonding of 40 $\mu m \times 100 \ \mu m$ devices is successful and the device characteristics are not degraded compared with those on the mother substrate. The bonding of further smaller-size devices is also studied.

 $40\mu m \times 100\mu m$ サイズの GaN-LED 発光時の光学顕微鏡写真、 電流電圧特性、より微細な素子の走査型電子顕微鏡像 Optical micrograph of light emission from the GaN-LED with 40 $\mu m \times 100 \mu m$ size, current-voltage characteristics and scanning electron micrograph of further smaller-size devices.

4.2Integrated Systems Research Division集積システム科学研究部門

The Integrated Systems Research Division focuses on basic research for terabit-capacity highly-functional memories, super-parallel processing, bio-sensing, wireless interconnection and 3-dimensional integration. With the obtained results we aim at the realization of artificial-brain technology exceeding humans in intelligent-processing speed, storage capacity and adaptive learning. The outlines of researches at the Integrated Systems Research Division are as follows.

集積システム科学部門では、テラビット容量と高機能メモリ、超並列演算、バイオセンシング、無線インタフェース、3次元集積に関する基盤研究を推進している。そして、これらの基盤技術を用いて、人間の脳より速い認知処理、大規模な記憶容量、環境に適応する学習機能を有する集積ブレインの実現を目指す。集積システム科学部門における研究プロジェクトの主なものの概要を紹介する。

時空間同期による超多数同時接続 無線 IoT の研究 Massive Connect IoT Based on Space-time Synchronization 教授 亀田 卓 Prof. Suguru Kameda

同期スペクトラム拡散・符号分割多元接続(同期 SS-CDMA)に高精度時刻同期・測位技術を適用することで、 超多数の無線通信ノードが同一空間に存在する過密環境 下においてもチャネル間干渉なく多数端末から同時に通 信可能な無線通信システムを実証する。

We have investigated a synchronized spread-spectrum code division multiple access (SS-CDMA) wireless communication system that can simultaneously communicate with a large number of terminals by using high-precision time synchronization and high-accuracy positioning technologies.

ソフトウェア無線機 (USRP) を用いた同期 SS-CDMA の実装と実測 評価

Implementation and evaluation of proposed synchronized SS-CDMA using software defined radio (USRP)

テラヘルツ波デバイス基盤技術の研究 Study on Fundamental Technologies for Terahertz-Wave Devices

教授 藤島 実(併任) Prof. Minoru Fujishima

ビームを集束させ、エネルギー効率を高めることができるサブ テラヘルツ無線通信の実現に取り組んでいる。CMOS 集積回 路を使って 2 次元ビームを電子的に操作できるフェーズドア レイ・トランシーバーを使い、100 メートルの通信距離で毎秒 100 ギガビット級の無線伝送を目指している。

We are working on the realization of sub-terahertz wireless communications that can focus beams and increase energy efficiency. Using a phased array transceiver that can electronically manipulate a two-dimensional beam using CMOS integrated circuits, they are aiming for 100 gigabits per second class wireless transmission over a communication distance of 100 meters.

300GHz 帯 CMOS フェーズドアレイトランシーバによる 伝送実験 Transmission experiment using 300-GHz band CMOS phased array transceiver

大腸 NBI 内視鏡における診断支援のための 2ステージ病変識別システムの開発

Development of a two-stage lesion identification system for diagnostic assistance in colorectal NBI endoscopy.

准教授 小出哲士 Assoc. Prof. Tetsushi Koide

大腸内視鏡検査において、定量的な推論結果を提示することで、医師による診断のばらつきを低減するためのコンピュータ支援システムを開発した。本システムは、NICE/JNET 分類に基づき、ディープラーニングを用いた病変位置検出器と病変タイプ分類器を組み合わせた2段階の大腸がん病変同定 CAD システムである。病変位置検出器は拡大画像において平均85%以上のF値を達成し、診断に有用な病変部位の検出を可能にした。

We developed a computer-aided system to reduce variability in diagnoses by physicians during colonoscopic examinations by presenting quantitative inference results. This system is a two-stage colorectal cancer lesion identification CAD system based on the NICE/JNET classification, combining a lesion position detector and lesion type classifier using deep learning. The lesion detector achieved an average F-measure of over 85% on magnified images, enabling the detection of lesion areas usable for diagnosis.

図:大腸 NBI 内視鏡における診断支援のための2ステージ病変識別 システム

Fig. Two-stage lesion identification system for diagnostic assistance in colorectal NBI endoscopy.

DOI: 10.1109/ITC-CSCC58803.2023.10212618

大腸内視鏡診断支援のための単一 FCN による 詳細な推論結果の提示が可能な CAD システム

A CAD system capable of providing detailed inference results using a single FCN for colorectal endoscopic diagnosis support

准教授 小出哲士 Assoc. Prof. Tetsushi Koide

本研究では、ResNet34 を改良し、GAP 層とFC 層を取り除き、カーネルサ イズ 1x1 の Conv 層を使って 21x21x5 の出力を得るネットワークを提案した。 出力は診断適正チャネル(1-ch)と分類チャネル(4-ch)に分かれ、Unet を 使って医師の関心領域から正解ラベルを生成し、Progressive Loss を用いて 分類チャネル間の連続性を向上させた。病変を 80%以上の精度で検知し、 拡大時には医師との一致率が 85.2%であり、リアルタイムでの連続的な診断 と周囲の領域の分類結果の提示が可能であることが示された。

図:大腸内視鏡診断支援のための単一 FCN による詳細な推論結果の提示が可能な CAD システムの出力例

In this study, we proposed a network that improves ResNet34 by removing the GAP and FC layers and using a Conv layer with a kernel size of 1x1 to obtain 21x21x5 outputs. The output was divided into a diagnostically appropriate channel (1-ch) and a classification channel (4-ch). We used Unet to generate correct labels from the physician's region of interest and Progressive Loss to improve the continuity between the classification channels. Lesions were detected with more than 80% accuracy, and at magnification the agreement with the physician was 85.2%, indicating that the system is capable of continuously diagnosing and presenting classification results for surrounding areas in real time.

Fig. Example of output from a CAD system capable of presenting detailed inference results with a single FCN for colonoscopy diagnosis support

DOI: 10.1109/ITC-CSCC58803.2023.10212877

アトピー性皮膚炎の診断支援に向けた深層学習を 用いた皮表微細構造のグレード評価手法の開発

Development of a Grading Method for Skin Surface Microstructure Using Deep Learning to Support Diagnosis of Atopic Dermatitis

准教授 小出哲士 Assoc. Prof. Tetsushi Koide

「アレルギー性皮膚疾患の病態における発汗異常の解明と治療法の開発」 の研究成果である AAMS では、深層学習を用いた皮表画像のキメのグレー ド分類を行う識別器を作成した。データ数やグレード枚数の偏りを改善する ために、キメの分類タスクに適したデータ拡張を実施した。11 クラス分類モ デルの最終的な正解率は約 65%であり、6 クラス分類モデルではさらに高精 度な分類が可能であった。

In the AAMS, a research project of "Elucidation of Sweating Abnormality in the Pathogenesis of Allergic Skin Diseases and Development of Treatment Methods," a discriminator was created to perform grade classification of skin surface image chymistry using deep learning. To improve the bias in the number of data and the number of grade sheets, data expansion suitable for the chymistry classification task was performed; the final correct classification rate for the 11-class classification model was about 65%, and the 6-class classification model was able to achieve even higher accuracy.

AAMSにより抽出した皮丘・皮溝識別画像を用いる.

図:診断支援システム AAMS により抽出した皮丘・皮溝識別画像を用い た皮表微細構造のグレード評価

Fig. Grade evaluation of skin surface microstructure using images of skin ridges and folds identified by the diagnostic support system AAMS

DOI: 10.1109/ITC-CSCC58803.2023.10212652

- 20 -

ヒト肝細胞キメラマウスの品質管理のための深層 学習を用いたグレード分類 Grade Classification Using Deep Learning for Quality Control of Human Hepatocyte Chimeric Mice

准教授 小出哲士 Assoc. Prof. Tetsushi Koide

本研究では、新薬開発に使用されるヒト肝細胞キメラマウスの品質管理 のために、深層学習を用いたグレード分類を行っています。ヒト肝細胞の 顕微鏡画像を識別器に入れて、各エリアのグレードを判定できるようにし ました。画像の大きな部分に対してはグレードが付けられていますが、小 さなエリアでは異なるグレードが見られ、また、4つのグレードの画像数に 偏りがあるという課題を、深層学習を用いた画像処理で解決しました。

In this study, we use deep learning to classify grades for quality control of human hepatocyte chimeric mice used in new drug development. Microscopic images of human hepatocytes are placed in a discriminator to determine the grade of each area. We solved the problem of grading for large areas of the image, but different grades were seen in small areas, and the number of images in the four grades was biased, using deep learning to process the images.

図:ヒト肝細胞キメラマウスの品質管理のためのグレード分類を深層 学習で解決

Fig.A deep learning solution to grade classification for quality control of human hepatocyte chimeric mice DOI: 10.1109/ITC-CSCC58803.2023.10212720

4.3 Molecular Bioinformation Research Division 分子生命情報科学研究部門

Molecular Bioinformation Research Division is specialized in the research for MEMS (Micro Electro Mechanical Systems), immobilization of bio molecule, bio-sensing technology, and environmental monitoring. The outlines of researches at the Molecular Bio-information Research Division are as follows.

分子生命情報科学研究部門は、MEMS、バイオ分子固定、バイオセンシング、環境情報センシングに関する 研究を行っている。分子生命情報科学研究部門における研究の主なものの概要を紹介する。

魚の光反射点滅型ウェアラブル光デバイス Wearable light reflecting skin device of fish

教授 岩坂正和 Professor Masakazu Iwasaka

Silverside fish の1種の魚の体表において,約10 ミクロン の分解能で光反射点滅ディスプレイを行う天然のウェアラ ブルデバイスを発見し先に報告した.今回,玄海灘に棲息 するカタクチイワシの体表にて同様の光反射型色素細胞 の構造を見いだした。

I have reported on the wearable optical device of a fish sepecies, silverside fish, in which living iridophore cells exhibited a light reflecting display. Recently, a similar chromatophore cell's skin tissue structure was found in the other species, Japanese anchovy.

カタクチイワシの体表の光反射型色素細胞の構造

Chromatophore cell's skin tissue structure of Japanese anchovy

シリコンとバイオの界面制御の研究 Interface Technology between Silicon and Biomolecules

教授 黒田章夫(併任) Prof. Akio Kuroda

Si デバイスの表面に、活性を保ったままバイオ分子を固定化する技術は新しい半導体バイオセンサーの開発に必要である。平坦な表面構造を有するタンパク質分子を改変して、Siとの親和性が高いアミノ酸を平面状に配置することで、新規のSi 結合タンパク質の開発を進めている。

The ability to target proteins to specific sites on a Si device while preserving their functions is necessary for the development of new biosensors. We are developing a novel Si-binding protein by engineering a protein to display amino acids with affinity for Si on the flat surface.

作製した Si 結合タンパク質の結合モデル図 平面状に配置したアミノ酸(黄色)が Si 表面と相互作用する Molecular model of the Si-binding protein.

細菌の SiO₂ 形成機構の解析と半導体 バイオ融合デバイス開発への応用 Molecular Mechanisms of SiO₂-Forming Bacteria and Their Applications 准教授 池田 丈(併任) Assoc. Prof. Takeshi Ikeda

グラム陽性細菌 Bacillus cereus が細胞内でマイクロカプ セル状の SiO₂ を形成することを発見し、その分子メカニズ ムの解析を進めている。SiO₂ 形成に関与する生体分子を 本菌より単離し、半導体バイオ融合デバイス開発のための ツールとして利用している。

We found that a Gram-positive bacterium *Bacillus cereus* and its close relatives form a microcapsule-like structure of SiO_2 in the cell. Several biomolecules involved in silica formation have been identified and are used to fabricate Sibased biomaterials and biodevices.

B. cereus が形成したマイクロカプセル状 SiO₂ 構造体の SEM 像 スケールバー:500 nm SEM image of microcapsule-like SiO₂ structures isolated from *B. cereus*. Scale bar: 500 nm.

4.4 Nanomedicine Research Division

集積医科学研究部門

Nanomedicine Research Division is specialized in the research for integration between medicine and nanotechnology, nanomedicine, nanodentistry, nano-pharmacy. The outlines of researches at the Nanomedicine Research Division are as follows.

集積医科学研究部門では、ナノメディシン、ナノデンティストリー、ナノファーマシー等、医療とナノ技術の融合 研究を行っている。現在行われている集積医科学研究部門における研究の主なものの概要を紹介する。

抗体アレイによる定量的サブセット分析 Quantitative Cell Subset Analysis Using Antibody Arrays

教授 加藤功一(併任) Prof. Koichi Kato

微小なチップ上に多種類の抗体を配列固定した抗体ア レイを用いて細胞表面マーカーのハイスループット解析が 可能です。さらに、データ解析に集合演算の概念を取り入 れることによって、細胞の定量的サブセット分析が可能に なることを見出しました。

An antibody microarray on which multiple antibodies are immobilized in an array format allows us to conduct the high-throughput analysis of cell surface markers. Recently we reported that the quantitative cell subset analysis can also be made using antibody microarray by incorporating the concept of set operations into data analysis.

抗体アレイを用いた定量的サブセット分析の概要 Overview of quantitative cell subset analysis using antibody array (Reprinted with permission from "Ogasawara T, Kato K. ACS Appl. Bio Mater. 2021, 4:7673-81". Copyright 2021 American Chemical Society)

Bone-BBB(blood-brain barrier)連関マイ クロ流体デバイスの作製 Development of the Bone-BBB Microfluidic Device 教授 加治屋幹人(併任) Professor. Mikihito Kajiya

骨と脳認知機能の連関を解明するために、骨細胞と血液 脳関門系細胞を適切な位置関係で立体的に培養する実 験系が必要となる。そこで本研究では、骨組織ー血液脳関 門連関ネットワークを模倣可能な還流デバイスを作製し た。

To elucidate the connection between bone and brain cognitive function, an experimental system that allows the three-dimensional culture of bone cells and blood-brain barrier cells in appropriate spatial relationships is necessary. Therefore, in this study, we developed a perfusion device capable of mimicking the bone-blood-brain barrier network.

骨細胞と脳血管内皮細胞・周皮細胞・アストロサイトを上下層に設 置して培養可能な還流デバイス

A fluidic device capable of culturing bone cells and brain vascular endothelial cells, pericytes, and astrocytes in upper and lower layers

病態の解析 准教授 柳瀬雄輝(併任) Post. Yuhki Yanase

我々はこれまで、表面プラズモン共鳴センサやインピーダ ンスセンサ等のバイオセンサを利用して in vitro 血管透過 性評価モデルの開発を進めてきた。さらに、血管透過性亢 進評価法を利用して、血管透過性の亢進が病態に深く関 与する慢性蕁麻疹(CSU)の発症機構に血液凝固や補体 系が関与する事を明らかにしてた。

We clarified that synergistic expression of tissue factor (TF) on vascular endothelial cells activates the extrinsic coagulation pathway and induces vascular hyperpermeability, followed by edema formation by means of biosensors.

血液凝固反応を中心とする蕁麻疹発症機序 Hypothetical mechanism of edema formation triggered by TF in CSU. (Int J Mol Sci. 2023;24(12):10320)

5. Research Facilities of RIND

研究設備

5.1 Super clean rooms

スーパークリーンルーム

Super clean rooms, partly class 10 at 0.1-µm particles, are used for fabrication of advanced devices and LSI's. 先端デバイス及び LSI の製作はスーパークリーンルームで行われる。最も清浄度の高いセクションはクラス 10 (1 立 方フィート内に 0.1µm 以上の粒径の粒子が 10 個以下)である。

West Building since 1988

East Building since 1998

Plan view of clean rooms in west and east buildings. The total clean room area measures 830 m². Chemical filters are set in the east clean room to avoid hazardous gases.

西棟及び東棟クリーンルーム平面図。クリーンルーム総面積は830m²。東棟クリーンルームには危険ガス除去用のケミカルフィルターが設置されている。

Super clean room in west building. 西棟スーパークリーンルーム

Super clean room in east building. 東棟スーパークリーンルーム

5.2 Equipment for advanced devices and LSI fabrication

先端デバイス及びLSI作製のための設備

5.2.1 Lithography

リソグラフィー

 Point-beam type electron beam lithography system (ELIONIX ELS-G100)

ポイントビーム型電子ビーム描画装置 (エリオニクス ELS-G100) Resolution 6nm

- Maskless photolithography system (Nanosystem Solutions D-light DL-1000)
 - マスクレス露光装置(ナノシステムソリューション ズ D-light DL-1000) Resolution 1µm

 Maskless photolithography system (Heidelberg DLA150)

Photoresist patterns by D-light DL-1000. D-light DL-1000によるレジストパターン

5.2.2 Dry etching

ドライエッチング

 ICP (Inductively Coupled Plasma) etcher for Si (YOUTEC)

Si用ICP(誘導結合プラズマ)エッチング装置 (ユーテック) Cl₂, HBr, N₂, O₂ 使用可能

 ◆ Si deep etching system (Sumitomo Precision Products)
 Si用深堀りエッチング装置

(住友精密工業) C₄F₆, SF₆, Ar 使用可能

♦ ICP etcher for SiO₂ (SAMCO)

> SiO₂用ICPエッチング装置 (サムコ) CF4, H₂, O₂, Ar 使用可能

- ECR (Electron Cyclotron Resonance) etchers for Si (KOBELCO)
 - Si用ECR(電子サイクロトロン共鳴)エッチング装置 (神戸製鋼) Cl₂, BCl₃, HBr, N₂, O₂ 使用可能

 ICP etcher for highly selective etching of SiO₂ (AYUMI INDUSTRY)

SiO₂用ICPエッチング装置 (アユミ工業) CF₄, H₂, O₂, Ar 使用可能

- RIE (Reactive Ion Etching) system for SiO₂ (KOBELCO)
 - SiO₂用RIE(反応性イオンエッチング)装置 (神戸製鋼) CF₄, H₂, O₂ 使用可能

◆ ICP etcher for Al (YOUTEC)

Al用ICPエッチング装置 (ユーテック) Cl₂, BCl₃, N₂ 使用可能

Magnetron RIE system for Al (KOBELCO)

Al用マグネトロンRIE装置 (神戸製鋼) Cl₂, BCl₃, N₂ 使用可能

 Chemical dry etching system for Si₃N₄ and poly-Si (KOBELCO)

Si₃N₄及びSiO₂用ケミカルドライエッチング装置 (神戸製鋼) CF₄, N₂, O₂ 使用可能

Plasma asher for removing photoresist (KOBELCO)

レジスト除去用プラズマアッシング装置 (神戸製鋼) N₂, O₂ 使用可能

5.2.3 Oxidation, annealing, and doping

酸化、アニール、不純物注入

◆ Oxidation and diffusion furnaces (Tokyo Electron) 酸化・拡散炉

(東京エレクトロン) Max. Temp. 1150℃

 RTA (Rapid Thermal Annealing) system (Samco HT-1000)

高速熱処理装置 (サムコ HT-1000) Max. Temp. raise rate 200℃/s

 Annealing furnaces for general purpose (Koyo Thermo System)

汎用熱処理装置 H₂, N₂, O₂, Low Pressure (光洋サーモシステム) Max. Temp. 1000℃

 Ion implanter (ULVAC)

> 高温イオン注入装置 IMax 3500 (アルバック) Al, B, As, P, F 等注入可能

 Phosphorus diffusion furnaces (SHINKO SEIKI)

リン拡散炉 (神港精機) Max. Temp. 900℃

酸化炉講習風景 Training of oxidation

5.2.4 Dielectric film deposition and epitaxial growth

絶縁膜堆積・エピタキシャル成長

 Low-pressure chemical vapor deposition (CVD) reactors for SiO₂, SiN, poly-Si (Tokyo Electron)

減圧CVD(化学気相成長)炉 (東京エレクトロン) SiO₂, SiN, poly-Si堆積可能

 ◆ Parallel plate type clean plasma CVD reactor for SiN, SiO₂, and amorphous Si (ULVAC)
 平行平板型プラズマCVD装置 (アルバック)

平行平板型フラスマCVD装置 (アルバック SiN, SiO₂, アモルファスSi 堆積可能

 Atmospheric pressure CVD reactor for SiO₂ Doing of P and B possible (AMAYA)

SiO₂堆積用常圧CVD装置 (天谷製作所) PおよびBドープ可能

常圧CVDウェハセッティング風景 Wafer setting to atmospheric CVD reactor

5.2.5 Metal deposition

金属薄膜堆積

 Metal/dielectrics sputtering system for BiSrTiO compound etc. (ULVAC)

金属/絶縁膜スパッタリング装置 (アルバック) BiSrTiO等堆積可能

Sputtering system for general purpose for variety materials (EIKO)

5.2.6 Others

その他

- ◆ Surface-activated bonding system (EIKO) 表面活性化接合装置 (エイコー)
 - Ar, H₂ Plasma treatment 可能

 Sputtering machine for metal interconnects for Al, Ti, TiN (EIKO)

金属配線用スパッタリング装置 (エイコー) Al, Ti, TiN 堆積可能

- Vacuum evaporation system for variety of metals (Donated: RICOH)
 - 真空蒸着装置 (寄贈:リコー) Al 等堆積可能

スパッタリング装置ウェハセッティング風景 Wafer setting to sputtering machine

5.3 Characterization and diagnostics equipment

評価·分析装置

 Secondary ion mass spectroscopy (SIMS) system with Cs and O ion gun (ULVAC-PHI PHI-6650)

2次イオン質量分析装置 (アルバック-ファイ PHI-6650) Cs, Oガン装備

 Fourier-transform infrared spectrometer (FTIR) (JEOL)

フーリエ変換赤外分光光度計 (日本電子) Resolution 0.5 cm⁻¹

 High resolution X-ray diffractometer (Rigaku ATX-E)

高解像度X線回折装置 (リガク ATX-E) Angle resolution 0.0002°

- Total reflection of X-ray fluorescence spectrometer (Technos TREX-610)
 - 全反射蛍光X線分析装置 (Technos TREX-610) 感度(Cr-Zn) 10¹⁰ atom/cm²

 Atomic force microscope (AFM) (Seiko Instruments Inc. SPI3800)

原子間力顕微鏡(セイコーインスツルメンツ SPI3800) Resolution Z:0.01nm, X, Y:0.1nm

 X-ray diffractometer (Rigaku RINT2100)

> X線回折装置 (リガク RINT2100)

Ellipsometer (Rudolph Research Auto EL)

エリプソメーター (ルドルフリサーチ Auto EL) Measurable thickness > 10nm

◆ Hall effect measurement system (ACCENT HL5500PC)

ホール効果測定装置 (ACCENT HL5500PC) Input impedance 10¹⁰ Ω

- Spectroscopic ellipsometer (J.A.Woollam JAPAN M-2000D)
- 分光エリプソメーター(ジェー・エー・ウーラム・ ジャパン M-2000D) Measurable thickness > 10nm

♦ High-resolution X-ray photoelectron spectroscopy (XPS) system (KRATOS ESCA-3400)

X線光電子分光分析装置 (KRATOS ESCA-3400) X ray source: Mg, Ka

◆ High-resolution X-ray photoelectron spectroscopy (XPS) system (VG Scienta ESCA-300)
 X線光電子分光分析装置 (VGシエンタ ESCA-300) Radius of analyzer: 300mm, X-ray source: 4kW

 Field emission scanning electron microscope (FE-SEM) (JEOL Ltd JSM-IT800)

電界放出型走查電子顕微鏡 (日本電子 JSM-IT800)

- Manual wafer prober (Vector Semiconductor) and semiconductor parameter analyzer (Keithley)
 - マニュアルプローバー(ベクターセミコン)及び 半導体パラメーターアナライザー(ケースレー)

 Focused ion (Ga) beam (FIB) system (Hitachi FB-2000)

集束イオン(Ga)ビーム加工装置 (日立 FB-2000) Min. beam diameter 10nm

 Semi-automatic wafer prober (Vector Semiconductor AX-2000)

セミオートプローバー (ベクターセミコンAX-2000)

SEMロードロック室へのウェハセッティング風景 Wafer setting to SEM load-lock chamber

マニュアルプローバーによる電気特性測定 Measuring electrical properties using manual prober

◆ X-ray diffraction (XRD) (Rigaku SmartLab XRD) 薄膜評価用X線回折装置 (リガク SmartLab XRD)

 Scanning X-ray photoelectron spectrometer (ULVAC-PHI PHI VersaProbe 4)

走査型X線光電子分光分析装置 (アルバック-ファイ PHI VersaProbe 4)

 Ic probing system under an extreme environment, 600°C.

600℃超高温プローバ 半導体パラメータアナライザ

- Atomic Force Microscope
- (Bruker Dimension Icon)

AFM原子間力顕微鏡(ブルカーDimension Icon)

 Semi-auto probing system and semiconductor parameter analyzer (MPITS3000-SE)

セミオートプロービングシステム、及び 半導体パラメータアナライザ(MPITS3000-SE)

 ◆ Test facility for high-frequency wireless communication system and devices up to100GHz
 100GHz程度までの高周波通信・デバイス評価設備

5.4 VLSI CAD environment

VLSI設計用CAD環境

5.4.1 Hardware

ハードウェア

Workstations

♦ SUN: 11 machines (SunFire X4600×1, SunFire V440×2, SunBlade2500×2, SunBlade2000×3, SunBlade1000×3)

♦ HP: 9 machines (ProLiant DL580G5×3, xw9300×1, xw8600×1, j6750×1, c8000×2, b2000×1)

Workstations for TCAD and LSI design TCAD及びLSIデザイン用ワークステーション

5.4.2 Software

ソフトウェア

TCAD tools

 Process/Device Simulators: SYNOPSYS TSUPREM4/MEDICI, ISE TCAD, SYNOPSYS Sentaurus, Selete ENEXSS

Other simulators

- ♦ Electromagnetic Field Simulators: ANSOFT HFSS, CST Microwave Studio
- ◆ Optical Wave-guide Simulator: Apollo Photonics APSS

LSI design tools

◆ Layout Design: CADENCE Virtuoso*, JEDAT alpha-SX(ISMO), Silvaco Expert*

٠	Schematic Design:	CADENCE Composer*, JEDAT alpha-SX(ASCA), Silvaco Gateway
٠	Functional Simulators:	CADENCE SPW*, Mathworks MATLAB
•	Circuit Simulators:	CADENCE Artist*, Spectre*, Silvaco SmartSpice*, SYNOPSYS Star-HSPICE*, HSIM*, TimeMill/PowerMill*, NanoSim*
•	Logic Simulators:	CADENCE NC-Verilog*, VerilogXL*, MENTOR ModelSim*, SYNOPSYS VSS*
•	Logic Synthesis:	ALTERA QuartusII, CADENCE HDL Compiler*, SYNOPSYS Design Compiler*, FPGA Compiler*, XILINX ISE Foundation
٠	Automatic P&R:	SYNOPSYS Milkyway*, Astro*, IC-Compiler*, CADENCE SoC-Encounter*
•	Verification:	CADENCE Diva*, Dracula*, Assura*, JEDAT Layver, MENTOR Calibre*, SYNOPSYS Hercules*

Notice that various kinds of popular CAD software (marked with "*") which support Verilog HDL/VHDL simulation, synthesis, layout design and verification for digital/analog VLSIs are provided by VLSI Design and Education Center (VDEC), the University of Tokyo.

6.1 Advanced device, process, and material technologies for ULSI

6.1.1 Fabrication techniques for MOS devices and TFTs

- [1] T. Yasuda, S. Sugawa, R. Kuroda, Y. Yokomichi, K. Kobayashi, H. Hamori, and A. Teramoto, "High-Resolution Defect Detection for Flat Panel Display Using Proximity Capacitance Image Sensor," ITE Transactions on Media Technology and Applications 11, pp. 158-163, 2023.
- [2] C. Watanabe, Y. Miyazaki, J. Tsuchimoto, H. Hosoya, K. Yamanaka, Y. Amemiya, A. Teramoto, "Pulse Width Dependence of Switching Characteristics for Magnetic Tunnel Junction," IEDM 2023 Special MRAM poster session ID11, 2023.
- [3] G. T. Rahman, K. Uesugi, Y. Amemiya and A. Teramoto, "Thermal Assisted Atomic Layer Deposition of Ruthenium by Ru Precursor and O2 as a reactant," The AVS 23rd International Conference on Atomic Layer Deposition, AS-TuP-6, 2023.
- [4] Hiroshi Nishizato, Krunal Girase, Takumi Moriyama, Kazuma Uesugi, Gagi Tauhidur Rahman, Patrick Lowery, P.E. Paul Totten, Troy Freeman, Yoshiteru Amemiya, Akinobu Teramoto, "Development of Piezo Controlled Vapor Delivery System for Ru ALD Application," The AVS 23rd International Conference on Atomic Layer Deposition, AF-MoP-16, 2023.
- [5] Y. Miyazaki, C. Watanabe, J. Tsuchimoto, H. Hosoya, Y. Amemiya, and A. Teramoto, "Switching Characteristics of MgO Based MTJ with Intermediate State," International Conference on Solid State Devices and Materials, pp- 483-484, 2023.
- [6] Hayato Kosaka, Hiroki Iwata, Yudai Watariguchi, Riichiro Shirota, Yoshiteru Amemiya, Shinichiro Takatani, Tomoyuki Suwa, Akinobu Teramoto, "GaN High Electron Mobility Transistor with Floating Gate for Accurate Threshold Voltage Control," ECS Meeting Abstracts 1844, 2023.
- [7] Alam Md Iftekharul, Tsuyoshi Takaoka, Atsushi Ando, Tadahiro Komeda, Akinobu Teramoto, "Organic Molecule-Induced Photosensor Enhancement in MoS2 Field Effect Transitor," International Workshop on DIE-LECTRIC THIN FILMS FOR FUTURE ELECTRON DEVICES, pp. 41-42, 2023.
- [8] 寺本章伸, "半導体とその川上産業、その未来と課題," クリーンテクノロジー 33, pp. 14-18,2023.
- [9] Y. Miyazaki, C. Watanabe, J. Tsuchimoto, H. Hosoya, Y. Amemiya and A. Teramoto, "Switching characteristics of MgO-based MTJ with intermediate state," Jpn. J. Appl. Phys. 63, pp. 03SP42 1-8, 2024.
- [10] Vuong Van Cuong, Kaho Koyanagi, Tatsuya Meguro, Seiji Ishikawa, Tomonori Maeda, Hiroshi Sezaki and Shin-Ichiro Kuroki, "Study of interface-trap and near-interface-state distribution in a 4H-SiC MOS capacitor with the full-distributed circuit model," Jpn. J. Appl. Phys., 63, 1, 015503-1 -015503-9, 2024
- [11] Akinori Takeyama, Takahiro Makino, Yasunori Tanaka, Shin-Ichiro Kuroki and Takeshi Ohshima, "Influence

of Gate Depletion Layer Width on Radiation Resistance of Silicon Carbide Junction Field-Effect Transistors," Quantum Beam Sci., 7 巻, 31 号, pp. 1-10, 2023.

- [12] Lia Aprilia, Tatsuya Meguro, Ratno Nuryadi, Tetsuo Tabei, Hidenori Mimura, Shin-Ichiro Kuroki, "Integrated Fabrication Process of Si Microcantilever Using TMAH Solution With Planar Molybdenum Mask," IEEE Journal of Microelectromechanical Systems, 32 巻, 3 号, pp. 290-296,
- [13] Satoru Emoto, Asuta Isobe, Tomonori Ikari, Kazuya Kawamura, Shin-ichiro Kuroki, Masamichi Naitoh, "Observation of Metal-free Phthalocyanine Adsorbed on SiC Reconstructed Surface," e-Journal of Surface Science and Nanotechnology, 20, 257–260, 2023
- [14] T. Kai, K. Kojima, A. Takeyama, T. Ohshima, Y. Tanaka, Shin-Ichiro Kuroki, "500°C Operation of 4H-SiC SRAM," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 18 日
- [15] Vuong Van Cuong, Kaho Koyanagi, Tatusya Meguro, Seiji Ishikawa, Hiroshi Sezaki, Tomonori Maeda, and Shin-Ichiro Kuroki, "Extremely Temperature Characterization of Interface and Near-Interface Traps in 4H-SiC MOS Capacitor with Full-Distributed Circuit Model," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 20 日
- [16] T. Meguro, M. Tsutsumi, A. Takeyama, T. Ohshima, Y. Tanaka, and S.-I. Kuroki, "Radiation Dose Response of 4H-SiC UV Sensor for MGy-Class Radiation Hardened CMOS UV Imager," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 21 日
- [17] T. Okamura, T. Meguro, A. Takeyama, T. Ohshima, Y. Tanaka, and S.-I. Kuroki, "SiC Sample-and-Hold Circuit for SiC CMOS Image Sensors," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 18 日
- [18] T. Ozaki, V. Van Cuong, A. Takeyama, T. Ohshima, K. Kojima, Y. Tanaka, and S-I. Kuroki, "Gamma-ray irradiation effects on 4H-SiC n/p MOSFETs with POA treatment," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 21 日
- [19] Shion Hiramoto, V. Van Cuong, Seiji Ishikawa, Hiroshi Sezaki, Tomonori Maeda, and Shin-Ichiro Kuroki,
 "500°C High-Temperature Characteristics of TiN-gate SiC n/p MOSFETs," Shion Hiramoto, International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 21 日
- [20] M. Tsutsumi, T. Meguro, A. Takeyama, T. Ohshima, Y. Tanaka, and S.-I. Kuroki, "Real-Time UV Imaging using 4H-SiC 64 Pixels CMOS Image Sensors," International Conference on Silicon Carbide and Related Materials (ICSCRM 2023), 2023 年 09 月 18 日
- [21] Y. Kunihashi, Y. Shinohara, S. Hasegawa, H. Nishinaka, M. Yoshimoto, K. Oguri, H. Gotoh, M. Kohda, J. Nitta, and H. Sanada, "Bismuth induced enhancement of Rashba spin–orbit interaction in GaAsBi/GaAs heterostructures", Appl. Phys. Lett. 122, 182402-1-6 (2023)
- [22] Guoqiang Zhang, Kouta Tateno, Satoshi Sasaki, Takehiko Tawara, Hiroki Hibino, Hideki Gotoh, and Haruki

Sanada, "Improving optoelectronic properties of InP/InAs nanowire p-i-n devices with telecom-band electroluminescence", Opt. Continuum 3, pp.176-184, 2024

- [23] Yusuke Tanaka, Yoshiharu Krockenberger Yoji Kunihashi, Hideki Gotoh, Junsaku Nitta, and Haruki Sanada, "X-ray reciprocal space mapping analysis of ferromagnetic GdN films grown by pulsed laser epitaxy", Appl. Phys. Lett. 124, pp.072408-1-5, 2024
- [24] S. Higashi, H. Kato, H. Hanafusa, "Application of Atmospheric Pressure Thermal Plasma Jet for Semiconductor Device Fabrication" Int. Conf. Processing & Manufacturing of advanced Materials (THERMEC' 2023),2023.
- [25] J. Yu, H. Hanafusa, and S. Higashi, "Extraction of Organic/Semiconductor Interfacial Thermal Resisitance based on Optical Interference Contactless Thermometry (OICT) ", 2023 Asia-Pacific Workshop on Advanced Semiconductor Devices(AWAD2023), pp. 142-143, 2023.
- [26] J Yu, R. Goto, H. Hanafusa, and S. Higashi, "Measurement of Heat Dissipation between SiC and Thermal Interface Material in Power Device Packaging Based on Optical-Interference Contactless Thermometry", 2023 International Conference on Solid State Devices and Materials(SSDM2023), pp. 575-576. 2023
- [27] J. Yu, R. Goto, H. Hanafusa, S. Higashi, "MEASUREMENT OF TRANSIENT HEAT TRANSFER ACROSS ORGANIC/SEMICONDUCTOR INTERFACE USING OPTICAL INTERFERENCE CONTACTLESS THERMOMETRY (OICT) ", 33rd International Symposium on Transport Phenomena (ISTP-33),
- [28] S. Higashi, H. Kato, J. Yu, K. Matsumoto, and H. Hanafusa, "Atmospheric-Pressure Reactive Thermal Plasma Jet Technology for Decarbonization of Semiconductor Manufacturing", 244th ECS Meeting, 2023.
- [29] R. Goto, J. Yu, H. Hanafusa, and S. Higashi, "Direct Measurement of silicon wafer surface temperature during plasma processing using Optical-Interference Contactless Thermometry (OICT) ", 44th International Symposium on Dry Process (DPS2023), pp. 195-196, 2023.
- [30] J. Yu, H. Hanafusa, S. Higashi, "Interfacial Thermal Resistance Measurement at Polymer/Semiconductor Interface Using Optical-Interference Contactless Thermometry (OICT), " 4th China International Youth Conference on Electrical Engineering (CIYCEE2023), pp. 991-995, 2023.
- [31] J. Yu, H. Hanafusa, S. Higashi, "Extraction of interfacial thermal resistance across an organic/semiconductor interface using optical-interference contactless thermometry," Appl. Phys. Express, 17 (3) (2024) 036502-1 036502-4

6.1.2 Impulse-radar detector for breast cancer

- [32] G. Liu, X. Xiao, M. Lu, X. Zhang and T. Kikkawa, "A compact ultra-wideband sub-nanosecond pulse generator with step recovery diodes," Meas. Sci. Technol. 34 (2023) 085701 (14pp) https://doi.org/10.1088/1361-6501/acc120
- [33] L. Peng, H. Song, X. Xiao, G. Liu, M. Lu, Y. Liu, B. Wei and T. Kikkawa, "A Fused Learning and Enhancing Method for Accurate and Noninvasive Hydration Status Monitoring With UWB Microwave Based

on Phantom," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 71, NO. 9, SEPTEMBER 2023

- [34] M. Lu, X. iao, G. Liu, H. Lu, Y. Pang and T. Kikkawa, "Breast tumor detection by 1D-convolutional neural network based on ultra-wide-band microwave technology," Meas. Sci. Technol. 34 (2023) 025702 (11pp) https://doi.org/10.1088/1361-6501/ac9cf9
- [35] Z. Wang, X. Xiao, Y. Pang, W. Su, T. Kikkawa, "Non-invasive, Intelligent Blood Glucose Monitoring on Fingertip Using Dual-band Fusion and LSTM-R Network," Publisher: IEEE Sensors Journal (Early Access) 25 December 2023 DOI: 10.1109/JSEN.2023.3344230
- B. Wei, H. Song, J. Katto, T. Kikkawa, "RSSI-CSI Measurement and Variation Mitigation With Commodity Wi-Fi Device," IEEE Internet of Things Journal (Volume: 10, Issue: 7, 01 April 2023) 6249 - 6258 Date of Publication: 23 November 2022 DOI: 10.1109/JIOT.2022.3223525
- [37] Hang Song, Shinsuke Sasada, Takayuki Kadoya, Koji Arihiro, Morihito Okada, Xia Xiao, Tomomi Ishikawa, Declan O'Loughlin, Jun-ichi Takada, and Takamaro Kikkawa, "Cross-Correlation of Confocal Images for Excised Breast Tissues of Total Mastectomy, " IEEE Transactions on Biomedical Engineering (Early Access)Page(s): 1 – 12, 01 January 2024.
- [38] Hang Song, Takamaro Kikkawa, "Microwave Imaging Algorithms for Breast Cancer Detection," Book Biomedical Engineering, 1st Edition, First Published2024, Jenny Stanford Publishing, Pages21. eBook ISBN9781003464044

6.1.3 CVD and contamination/particle control

- [39] Fujii, Y., S. Zhou, M. Shimada, and M. Kubo, "Synthesis of Monodispersed Hollow Mesoporous Organosilica and Silica Nanoparticles with Controllable Shell Thickness Using Soft and Hard Templates", Langmuir, 39, (13), 4571-4582 (2023)
- [40] Kubo, M., T. Matsumoto, and M. Shimada, "Enhancement of Hydrogen Adsorption on Spray-Synthesized HKUST-1 via Lithium Doping and Defect Creation", Materials, 16, 5416 (2023)
- [41] M. Kubo, T. Kitano, and M. Shimada, "Spray Synthesis of Hierarchical Porous Metal-Organic Framework HKUST-1 with Soft Templates and Methylene Blue Adsorption Performance", Advanced Powder Technology, 35, (1), 104280, 2024.
- [42] M. Kubo, M., Y. Miyoshi, Y. Uchitomi, and M. Shimada, "Insights into the Spray Synthesis of UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: Effect of Zirconium Precursors and Process Parameters", Crystals, 14, (2), 116, 2024
- [43] M. Hudandini, K. Kusdianto, M. Kubo, and M. Shimada, "Gas-phase Fabrication and Photocatalytic Activity of TiO2 and TiO2–CuO Nanoparticulate Thin Films", Materials, 17, (5), 1149, 2024.
- [44] 久保 優, 松谷史也, 島田 学, "噴霧乾燥 Na-FAU ゼオライトによる Pb2+の吸着特性", 化学工学論 文集, 50, (2), 49-56, 2024

[45] D. Jiang, M. Hudandini, Y. Masaki, K. Kusdianto, M. Kubo, and M. Shimada, "Visible-Light Driven Photocatalytic Activity of Ag Loaded TiO2 Nanoparticulate Thin Film Fabricated via PECVD-PVD Method", J. Chem. Eng. Japan, 57, (1), 2331105, 2024.

6.1.4 Organic electronic devices and application for organic chemical materials

- [46] H. Hirano, K. Yamana, H. Isozaki, S. Kawamura, Y. Sanada, K. Bando, A. Tabata, K. Yoshikawa, H. Azuma, T. Takata, H. Tanaka, Y. Sakurai, M. Suzuki, N. Tarutani, K. Katagiri, S. Sawada, Y. Sasaki, K. Akiyoshi, T. Nagasaki, A. Ikeda, "Carborane Bearing Pullulan Nanogel-Boron Oxide Nanoparticle Hybrid for Boron Neutron Capture Therapy", Nanomedicine, 49, pp. 102659, 2023.
- [47] R. Kawasaki, S. Kawamura, T. Kodama, K. Yamana, A. Maeda, D. Yimiti, S. Miyaki, S. Hino, N. Ozawa, T. Nishimura, S. Kawamoto, A. Ikeda, "Development of a Water-Dispersible Supramolecular Complex of Polyphenol with Polypeptides for Attenuation of the Allergic Response using a Mechanochemical Strategy", Macromol. Biosci., 23 (4), pp. 2200462, 2023.
- [48] K. Nishimura, K. Yamana, R. Kawasaki, A. Ikeda, Improvement in "Photodynamic Activity by Porphyrin– Fullerene Composite System in Lipid Membrane", Org. Biomol. Chem., 21 (23), pp. 4810-4816, 2023.
- [49] K. Yagi, K. Ohira, K. Yamana, K. Imato, R. Kawasaki, A. Ikeda, Y. Ooyama, "Development of Water-soluble Phenazine-2,3-diol-based Photosensitizers for Singlet Oxygen Generation", Org. Biomol. Chem., 21 (25), pp. 5194-5202, 2023.
- [50] R. Kawasaki, H. Hirano, K. Yamana, A. Oshige, K. Nishimura, N. Kono, Y. Sanada, K. Bando, A. Tabata, N. Yasukawa, H. Azuma, T. Takata, Y. Sakurai, H. Tanaka, M. Suzuki, N. Tarutani, K. Katagiri, T. Nagasaki, A. Ikeda, "Phospholipid-Coated Boronic Oxide Nanoparticles as a Boron Agent for Boron Neutron Capture Therapy", ChemBioChem, 24 (15), pp. e202300186, 2023.
- [51] K. Yamana, R. Kawasaki, K. Kondo, H. Hirano, S. Kawamura, Y. Sanada, K. Bando, A. Tabata, H. Azuma, T. Takata, Y. Sakurai, H. Tanaka, T. Kodama, S. Kawamoto, T. Nagasaki, A. Ikeda, "HER-2-targeted Boron Neutron Capture Therapy Using an Antibody-Conjugated Boron Nitride Nanotube/β-1,3-Glucan Complex", Nanoscale Adv., 5 (15), pp. 3857-3861, 2023.
- [52] M. Okuno, K. Yamana, S. Kawamura, S. Hino, R. Kawasaki, A. Ikeda, "Selective Photodynamic Activity of Tetrakis(4-Aminophenyl)Porphyrins with and without Acetyl Protecting Groups on Cancer and Normal Cells", Chem. Eur. J., 29 (47), pp. e202301385, 2023.
- [53] R. Kawasaki, A. Ikeda, ""On-off" Switching of Functional Guest Molecules via Exchange of Natural Product Solubilizing Agents", ChemBioChem, 24 (21), pp. e202300455, 2023.
- [54] R. Kawasaki, A. Oshige, K. Yamana, H. Hirano, K. Nishimura, Y. Miura, R. Yorioka, Y. Sanada, K. Bando, A. Tabata, K. Yasuhara, Y. Miyazaki, W. Shinoda, T. Nishimura, H. Azuma, T. Takata, Y. Sakurai, H. Tanaka, M. Suzuki, T. Nagasaki, A. Ikeda, "HER-2-targeted Boron Neutron Capture Therapy with Carborane-integrated Immunoliposomes Prepared via an Exchanging Reaction" Chem. Eur. J., 29 (72), pp. e202302486,

2023.

[55] K. Takahashi, T. Nishiyama, N. Umezawa, Y. Inoue, I. Akiba, T. Dewa, A. Ikeda, T. Mizuno, " Delivery of External Proteins into the Cytoplasm Using Protein Capsules Modified with IgG on the Surface, Created from the Amphiphilic Two Helix-Bundle Protein OLE-ZIPS, " Chem. Commun., 60 (8), pp. 968–971, 2024.

6.2 Technologies for intelligent systems

6.2.1 Wireless communication and network

- [56] S. Akasaka, S. Kameda, S. Yasuda, and N. Shiga, "Implementation and Evaluation of Synchronized SS-CDMA Using Wireless Two-Way Interferometry (Wi-Wi)," The 14th International Conference on Ubiquitous and Future Networks (ICUFN 2023), Paris & Virtual Conference, 2023.
- [57] H. Kita, H. Oguma, S. Kameda, and N. Suematsu, "Evaluation of Satellite Signal Reception Error by Sky View Factor for QZSS Short Message SS-CDMA Communication System," The 14th International Conference on ICT Convergence (ICTC 2023), Jeju Island, South Korea, 2023.
- [58] S. Tanaka, T. Yoshida, M. Fujishima, "Effects of parasitic elements on L-type LC/CL matching circuits," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Nov. 7, 2023
- [59] S. Lee, S. Amakawa, T. Yoshida, and M. Fujishima, "A 58-%-lock-range divide-by-9 injection-locked frequency divider using harmonic-control technique," IEICE Trans. Electron., vol. E106-C, no. 10, pp. 529–532, October 2023.
- [60] S. Lee, K. Takano, S. Amakawa, T. Yoshida, M. Fujishima, "A 0.6-V 41.3-GHz power-scalable sub-sampling PLL in 55-nm CMOS DDC," IEICE Trans. Electron., vol. E106-C, no. 10, pp. 533–537, October 2023.
- [61] S. Tanaka, T. Yoshida, M. Fujishima, "Effects of Parasitic Elements on LC/CL Matching Circuits," International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2023), Jun. 27, 2023
- [62] S. Tanaka, T. Yoshida, S. Amakawa, M. Fujishima, "Analysis of the Wilkinson Coupler Under Different Input Conditions, " URSI General Assembly and Scientific Symposium (URSI GASS 2023), Aug. 24, 2023.
- [63] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "Differential Wilkinson Coupler with Reduced Reflections at Intersections," URSI General Assembly and Scientific Symposium (URSI GASS 2023), Aug. 22, 2023.
- [64] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "Suppression of Reflections and Elimination of Transmission Disparities in Differential Crossover Line Junctions, " 2023 IEEE 15th International Conference on ASIC (ASICON 2023), Oct. 27, 2023.
- [65] L. Xu, S. Yabuki, S. Tanaka, T. Yoshida, M. Fujishima, "A 27-to-65-GHz CMOS Amplifier with Tunable Frequency Response," 2023 IEEE 15th International Conference on ASIC (ASICON 2023), Oct. 27, 2023.
- [66] T. Yoshida, S. Hara, T. Hagino, M. Mubarak, A. Kasamatsu, K. Takano, Y. Sugimoto, K. Sakakibara, S.

Amakawa, M. Fujishima, "A 2D Beam-Steerable 252-285-GHz 25.8-Gbit/s CMOS Receiver Module, " 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 5, 2023.

- [67] L. Xu, S. Tanaka, T. Yoshida, M. Fujishima, "Design of 40-nm CMOS active combiner with Cascode Circuit,"
 International Symposium on Biomedical Engineering / International Workshop on Nanodevice Technologies (ISBE2023/IWNT2023), Nov. 22, 2023.
- [68] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "A 40nm CMOS Wide-Bandwidth Marchand Balun at 180-370 GHz, "International Symposium on Biomedical Engineering / International Workshop on Nanodevice Technologies (ISBE2023/IWNT2023), Nov. 21, 2023.
- [69] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "Evaluation of a 40-nm CMOS Process 105-to-145-GHz Differential Wilkinson Coupler," 2023 Asia-Pacific Microwave Conference (APMC 2023), Dec. 7, 2023.
- [70] L. Xu, S. Yabuki, S. Tanaka, T. Yoshida, M. Fujishima, "Active Combiner with Cascode Circuit," 2023 Thailand-Japan Microwave (TJMW), Dec. 15, 2023.
- [71] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "A 180-370-GHz Wide-Bandwidth Marchand Balun with Lateral Ground Wall, " 2023 Thailand-Japan Microwave (TJMW), Dec. 14, 2023.
- [72] M. Fujishima, "CMOS Sub-Terahertz Wireless Communications Using High-Frequency Circuit Techniques Beyond Fmax, " 2023 IEEE Custom Integrated Circuits Conference (CICC), Apr. 23, 2023.
- [73] M. Fujishima, "The Future of 300 GHz Band Wireless Communications, " European Conference on Networks and Communications (EuCNC), Jun. 6, 2023.
- [74] M. Fujishima, "Ultrahigh-Speed Wireless Communications in the 300-GHz Band and Its Future," 2023 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT 2023), Aug. 15, 2023.
- [75] M. Fujishima, "300-GHz CMOS Transceivers and Future of Sub-Terahertz Communication," URSI General Assembly and Scientific Symposium (URSI GASS 2023), Aug. 22, 2023.
- [76] M. Fujishima, "Sub-Terahertz Communication and Its Future Towards 6G, " 2023 IEEE 15th International Conference on ASIC (ASICON 2023), Oct. 27, 2023.
- [77] M. Fujishima, "Evolving Terahertz Wireless Communication: Achieving Ultrahigh Data Rates through Efficient Beam Steering," IEEE 2023 Asian Solid-State Circuit Conference (A-SSCC 2023), Nov. 7, 2023.
- [78] M. Fujishima, "Highly Efficient Wireless Communications Using 300-GHz-Band Phased Arrays, " 2023 Asia-Pacific Microwave Conference (APMC 2023), Dec. 7, 2023.
- [79] M. Fujishima, "300 GHz Band Wireless Communications and Its Future, "Terahertz-Related Devices and Technologies (TeraTech 2023), Sep. 7, 2023.
- [80] M. Fujishima, "Sub-Terahertz Communication and Its Future Towards 6G," 2023 Thailand-Japan Microwave (TJMW), Dec. 15, 2023.
- [81] S. Hara, MH Mubarak, A. Kasamatsu, Y. Sugimoto, K. Sakakibara, K. Takano, T. Yoshida, S. Amakawa, M. Fujishima, "25.9-Gb/s 259-GHz Phased-Array CMOS Receiver Module with 28° Steering Range," The 2024

IEEE Radio and Wireless Symposium (RWS2024), Jan. 22, 2024.

- [82] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "A 180-370-GHz Wide-Bandwidth Marchand Balun with Lateral Ground Wall, "GlobalNet Workshop 2024 in Hiroshima (GNW), Mar. 4, 2024.
- [83] L. Xu, S. Tanaka, T. Yoshida, M. Fujishima, "A study of 150-GHz CMOS active power divider with cross coupling capacitors," GlobalNet Workshop 2024 in Hiroshima (GNW), Mar. 4, 2024.
- [84] Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, "A 180-370-GHz Wide-Bandwidth Marchand Balun with Lateral Ground Wall, " 電子情報通信学会総合大会, 2024 年 3 月 6 日.
- [85] L. Xu, S. Tanaka, T. Yoshida, M. Fujishima, "A study of 150-GHz CMOS active power divider with cross coupling capacitors," 電子情報通信学会総合大会, 2024 年 3 月 8 日.
- [86] 井上裕貴,吉田毅,坂巻亮,天川修平,藤島実,"100GHz 超 CMOS 集積回路設計のための電磁界解 析用材料パラメータ補正,"電子情報通信学会総合大会,2024年3月8日.
- [87] 原 紳介, ムバラク モハメド, 笠松 章史, 杉本 義喜, 榊原 久二男, 高野 恭弥, 吉田 毅, 天川 修 平, 藤島 実, "259-GHz フェーズドアレーCMOS 受信モジュール," 電子情報通信学会総合大会, 2024年3月5日.
- [88] 笠松 章史, 原 紳介, ムバラク モハメド, 田野井 聡, 萩野 達雄, 久保 俊一, 鈴木 貴之, 三浦 賢, 杉本 義喜, 榊原 久二男, 高野 恭弥, 吉田 毅, 天川 修平, 藤島 実, "300GHz帯2次元ビーム走査 送受信機による高速無線伝送," 電子情報通信学会総合大会, 2024年3月5日.
- [89] 石原 俊, 梅林 健太, 藤島 実, 亀田 卓, 片山 光亮, "事前等化を用いたテラヘルツ無線通信の最 適化の一検討," 電子情報通信学会総合大会, 2024 年 3 月 8 日.

6.2.2 Hyper-human robotics

- [90] Qing Li, Shaopeng Hu, Kohei Shimasaki and Idaku Ishii, "HFR-Video-Based Stereo Correspondence Using High Synchronous Short-Term Velocities, "Sensors 2023, pp.4285, 2023.DOI:10.3390/s23094285
- [91] Qing Li, Shaopeng Hu, Kohei Shimasaki and Idaku Ishii, "An Active Multi-Object Ultrafast Tracking System with CNN-based Hybrid Object Detection, "Sensors 2023, pp.4150, 2023.DOI:10.3390/s23084150
- [92] Feiyue Wang, Shaopeng Hu, Kohei Shimasaki, and Idaku Ishii, "HFR-video-based Fingertip Velocimeter for Multi-finger Tapping Detection, "IEEE SENSORS JOURNAL, Volume: 23, Issue: 10, pp.10673-10682, 2023.DOI:10.1109/JSEN.2023.3263166
- [93] Kotaro Fujita, Feiyue Wang, Kohei Shimasaki, Idaku Ishii, Ryo Okamoto, Hironori Higashida," Vibration Auralization System Using High-Speed Vision, "Proceedings of the IEEE ISIE 2023, 2023.
- [94] Idaku Ishii, Kohei Shimasaki, "Wide -Area Vibration Monitoring of Ironworks Conveyors Using Panoramic High-Speed Vision, "Proceedings of The 22nd World Congress of the International Federation of Automatic Control, 2023

- [95] Wang Jiahua, Qing Li, Shaopeng Hu, Kohei Shimasaki, Idaku Ishii, " A High-Speed Stereo Monitoring System for Remote One-Man Operation, " Proceedings of IEEE Sensor Applications Symposium 2023, 2023.
- [96] Junhao Li, Kohei Shimasaki, and Idaku Ishii, " Long-distance avian identification approach based on highframe-rate video, " Proceedings of IEEE International Conference on Automation Science and Engineering (CASE) 2023,2023.
- [97] Takuto Ogata, Shaopeng Hu, Feiyue Wang, Kohei Shimasaki, Idaku Ishii, "Wheel Behavior Measurement Based on Ultra-High-Speed Zoom-Tracking Video Shooting," Proceedings of IECON 2023, 2023.
- [98] Kohei Shimasaki, Masaru Ito, Shaopeng Hu, Feiyue Wang and Idaku Ishii, "Smart Telescope System with Automatic Tracking, "Proceedings of IEEE SENSORS 2023, 2023.
- [99] Junhao Li, Kohei Shimasaki, Abudoureheman Tuniyazi, Idaku Ishii, Mari Ogihara, Mikio Yoshiyama, "HFR video-Based Hornet Detection Approach Using wing-Beat Frequency Analysis, "Proceedings of IEEE SEN-SORS 2023, 2023.
- [100] Kotaro Fujita, Feiyue Wang, Kohei Shimasaki, Idaku Ishii, " Remote Vibration Haptization System Using High-Speed Active Vision, " Proceedings of IEEE ROSE 2023, 2023

6.2.3 Massive-parallel mobile-embedded processor

- [101] Kyosuke Kageyama, Sota Arai, Hajime Hamano, Xiangbo Kong, Tetsushi Koide, and Takeshi Kumaki, "Parallel Software Encryption of AES Algorithm by Using CAM-Based Massive-Parallel SIMD Matrix Core for Mobile Accelerator," Journal of advances in information technology, vol. 14, no. 2, pp. 355-362, Apr., 2023.
- [102] Kyosuke Kageyama, Sota Arai, Hajime Hamano, Xiangbo Kong, Tetsushi Koide, and Takeshi Kumaki, "Implementation of Floating-Point Arithmetic Processing on Content Addressable Memory-Based Massive-Parallel SIMD matriX Core," IEEJ Transactions on Electrical and Electronic Engineering, vol. 18, pp. 546-558, Mar., 2023.
- [103] Kyosuke Kageyama, Hajime Hamano, Ryogo Kayama, Tetsushi Koide, and Takeshi Kumaki, "Implementation of Modulo Multiplication with CAM-Based Massive-Parallel SIMD Matrix Core," 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Korea, Republic of, 2023, pp. 1-4, doi: 10.1109/ITC-CSCC58803.2023.10212453.

6.2.4 Computer aided diagnosis system

[104] Daisuke Katayama, Yongfei Wu, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, Shiro Oka, Shinji Tanaka, "Development of Computer-Aided Diagnosis System Using Single FCN Capable for Indicating Detailed Inference Results in Colon NBI Endoscopy," 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Korea, Republic of, 2023, pp. 1-6, doi: 10.1109/ITC-CSCC58803.2023.10212877.

- [105] Yongfei Wu, Daisuke Katayama, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, Shiro Oka, Shinji Tanaka, "A Two-Stage Lesion Recognition System for Diagnostic Support in Colon NBI Endoscopy," 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Korea, Republic of, 2023, pp. 1-6, doi: 10.1109/ITC-CSCC58803.2023.10212618.
- [106] Tatsuki Ohta, Yuma Miyaji, Tetsushi Koide, Kenta Nakamoto, Yuki Hayashida, Yumi Aoyama, "A Roughness Grading Method for Skin Surface Microstructure Using Deep Learning for the Assessment of Atopic Dermatitis," 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Korea, Republic of, 2023, pp. 1-6, doi: 10.1109/ITC-CSCC58803.2023.10212652.
- [107] Takumi Fujisawa, Tetsushi Koide, Masaki Takahashi, Mutsumi Inamatsu, Chise Tateno, "A Quantitative Evaluation Method Using Deep Learning for Quality Control of Chimeric Mice with Humanized Livers," 2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC), Jeju, Korea, Republic of, 2023, pp. 1-6, doi: 10.1109/ITC-CSCC58803.2023.10212720.
- [108] 呉 泳飛,片山 大輔,小出 哲士,玉木 徹,吉田 成人,森元 晋,岡本 由貴,岡 志郎,田中 信 治,"大腸 NBI 内視鏡における診断支援のための2ステージ病変識別システム",第29回画像セン シングシンポジウム論文集(SSII2023), IS1-09, SO1-09 (2023)(査読あり)
- [109] 藤澤 拓海,小出 哲士,高橋 真生,稲松 睦,立野 知世,"深層学習を用いたヒト肝細胞キメラマ ウスの品質の定量的評価",第29回画像センシングシンポジウム論文集(SSII2023), IS1-10, SO1-10 (2023)(査読あり)
- [110] 太田 樹,小出 哲士,中元 健太,林田 優季,青山 裕美,"アトピー性皮膚炎の診断支援に向けた 深層学習を用いた皮表微細構造のグレード評価手法の開発",第 29 回画像センシングシンポジウ ム論文集(SSII2023), IS1-12, SO1-12 (2023) (査読あり)
- [111] 呉 泳飛, 片山 大輔, 小出 哲士, 玉木 徹, 吉田 成人, 森元 晋, 岡本 由貴, 岡 志郎, 田中 信 治, "大腸内視鏡診断支援のための単一 FCN による詳細な推論結果の提示が可能な CAD システム の開発", 第 29 回画像センシングシンポジウム論文集(SSII2023), IS2-12, SO2-12 (2023)(査読あり)
- [112] Hideki Murakami, Takuma Mori, Tetsushi Koide, "Hardware Implementation of Vacuum Pump Anomaly Detection using Autoencoder", Proc. of The 5th International;Symposium on Neuromorphic AI Hardware, P2-19, March 2, 2024.
- [113] 太田 樹,小出 哲士,中元 健太,林田 優季,青山 裕美,"アトピー性皮膚炎の診断支援に向けた 深層学習を用いた肌のキメのグレード評価法",2024 年電子情報通信学会総合大会論文集,D-16-05, 2024 年 3 月 7 日(木).
- [114] 藤澤 拓海,小出 哲士,高橋 真生,稲松 睦,立野 知世,"ヒト肝細胞キメラマウスの品質管理に 向けた深層学習による定量的評価",2024 年電子情報通信学会総合大会論文集,D-20-01,2024 年 3 月 7日(木).
- [115] 呉 泳飛, 片山 大輔, 小出 哲士, 玉木 徹, 吉田 成人, 森元 晋, 岡本 由貴, 岡 志郎, 田中 信治,
 "大腸内視鏡に向けた病変分割と局所分類が可能な診断支援システム", 2024 年電子情報通信学会
 総合大会論文集, D-20-02, 2024 年 3 月 7 日(木).

6.3.1 Biological devices and systems

- [116] Naoto MATSUO, Akira HEYA, Kazushige YAMANA, Koji SUMITOMO, and Tetsuo TABEI, "Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance, " IEICE TRANS. ELECTRON., VOL.E107–C, NO.3, pp.76-79, 2024.
- [117] Tomoki Nishimura, Takenori Ishida, Hisakage Funabashi, Ryuichi Hirota, Takeshi Ikeda, Akio Kuroda, "Detection of fine asbestos fibers using fluorescently labeled asbestos-binding proteins in talc", Journal of Hazardous Materials Advances, 12, 100332, 2023
- [118] Yusuke Murai, Hiroya Sato, Hayate Inoue, Eiji Arita, Yoshiaki Yaguchi, Takenori Ishida, Takeshi Ikeda, Ryuichi Hirota, Akio Kuroda, Hisakage Funabashi, "An artificial insulin receptor that self-assembles and works on a gold surface" Electrochemistry, in press
- [119] Takeshi Ikeda*, Yukihide Nakasugi, Miki Nakagawa, Shun-ichi Matsuura, Takuji Ikeda, Takenori Ishida, Hisakage Funabashi, Ryuichi Hirota, Akio Kuroda, "Discovery of long-chain polyamines embedded in the biosilica on the Bacillus cereus spore coat", Journal of Bioscience Bioengineering, 173(4), pp.254-259, 2024.

6.3.2 Magnetic effect of biological materials

- [120] H Asada, E Muneyama, M Kurahashi, K Takeuchi, M Iwasaka, "Shape Observation by Local illumination Using Reflected Light from Magnetically Controlled Guanine Crystal Platelet" 2023 E International Magnetic Conference (INTERMAG), 1-5 2023
- [121] Y Takeuchi, R Yoshikawa, Y Mitsui, M Iwasaka, M Matsuda, A Hamasaki "Differences in the Optical Response of MSU and CPP Crystals During Magnetic Orientation: Possibility of Diagnosing Gout and Pseudogout" Bioelectromagnetics 1 2023
- [122] D Yano, M Bessho-Uehara, J Paitio, M Iwasaka, Y Oba "14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei" Photochemical & Photobiological Sciences 22 (2), 263-277

6.4 Medical science and technology

6.4.1 Diagnosis and regenerative medical technologies

- [123] Rikitake K, Kunimatsu R, Yoshimi Y, Nakajima K, Hiraki T, Aisyah Rizky Putranti N, Tsuka Y, Abe T, Ando K, Hayashi Y, Nikawa H, Tanimoto K. "Effect of CD146+ SHED on bone regeneration in a mouse calvaria defect model. " Oral Dis 29, 725-734, 2023
- [124] Yumi Tsuchida, Maho Shiozawa, Kazuyuki Handa, Hidekazu Takahashi, Hiroki Nikawa. "Comparison of the accuracy of different handheld-type scanners in three-dimensional facial image recognition." J Prosthodont

Res. 67, 222–230, 2023.

- [125] Oda Y, Kawano R, Murakami J, Kado I, Okada Y, Nikawa H. "Effect of Lacticaseibacillus rhamnosus L8020 on the abundance of periodontal pathogens in individuals with intellectual disability: a randomized clinical trial. " Quintessence Int. 2023, 54:372-383
- [126] Oda Y, Furutani C, Kawano R, Murakami J, Mizota Y, Okada Y, Nikawa H. "Comparison of dental plaque flora between intellectually disabled patients and healthy individuals: a cross-sectional study." Odontology. 2023 Online ahead of print.
- [127] Huang HY, Feng SW, Chiang KY, Li YC, Peng TY, Nikawa H. "Effects of various functional monomers' reaction on the surface characteristics and bonding performance of polyetheretherketone. "J Prosthodont Res. 2023. Online ahead of print.
- [128] Yohei Hayashi, Kana Yanagihara, Yujung Liu, Tomoko Yamaguchi, Yasuko Hemmi, Minako Kokunugi, Kozue Ichio Yamada, Ken Fukumoto, Mika Suga, Satoshi Terada, Hiroki Nikawa, Kenji Kawabata, Miho Furue."Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. " In Vitro Cellular & Developmental Biology, accepted
- [129] W.-F. Lee, M.-S. Chen, T.-Y. Peng, P.-C. Huang, H. Nikawa, P.-W. Peng*. "Comparative analysis of the retention force and deformation of PEEK and PEKK removable partial denture clasps with different thicknesses and undercut depths. " Journal of Prosthetic Dentistry (JPD), in press (2023/12/5).
- [130] P.-W. Peng, M.-S. Chen, T.-Y. Peng, P.-C. Huang, H. Nikawa, W.-F. Lee*." In vitro study of optimal removable partial denture clasp design made from novel high-performance polyetherketoneketone. " Journal of Prosthodontic Research (JPR), 2023, accept (2023/12/17).
- [131] Hiroki Nikawa, Tsuyoshi Taji, Yuichi Mine, Saiji Shimoe, Masato Kaku, Takeshi Murayama."Innovation from Dentistry: The Inside Story From Research to Patents, Licenses, and Royalty Income. "J of Oral Tissue Engin, Accepted 2023.
- [132] Rikitake K, Kunimatsu R, Yoshimi Y, Nakajima K, Hiraki T, Aisyah Rizky Putranti N, Tsuka Y, Abe T, Ando K, Hayashi Y, Nikawa H, Tanimoto K. "Effect of CD146+ SHED on bone regeneration in a mouse calvaria defect model. " Oral Dis 29, 725-734, 2023
- [133] Yumi Tsuchida, Maho Shiozawa, Kazuyuki Handa, Hidekazu Takahashi, Hiroki Nikawa. "Comparison of the accuracy of different handheld-type scanners in three-dimensional facial image recognition. "J Prosthodont Res. 67, 222–230, 2023.
- [134] Oda Y, Furutani C, Kawano R, Murakami J, Mizota Y, Okada Y, Nikawa H. "Comparison of dental plaque flora between intellectually disabled patients and healthy individuals: a cross-sectional study." Odontology. 2023 Online ahead of print.
- [135] Oda Y, Kawano R, Murakami J, Kado I, Okada Y, Nikawa H. "Effect of Lacticaseibacillus rhamnosus L8020 on the abundance of periodontal pathogens in individuals with intellectual disability: a randomized clinical trial. " Quintessence Int. 2023, 54:372-383
- [136] Huang HY, Feng SW, Chiang KY, Li YC, Peng TY, Nikawa H. "Effects of various functional monomers' reaction on the surface characteristics and bonding performance of polyetheretherketone." J Prosthodont Res.

2023. Online ahead of print.

- [137] Yohei Hayashi, Kana Yanagihara, Yujung Liu, Tomoko Yamaguchi, Yasuko Hemmi, Minako Kokunugi, Kozue Ichio Yamada, Ken Fukumoto, Mika Suga, Satoshi Terada, Hiroki Nikawa, Kenji Kawabata, Miho Furue, "Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells." In Vitro Cellular & Developmental Biology, accepted
- [138] Maki Kawase1, Takuya Kihara2, Sumiyo Mimura3, Takahiro Shuto4, Tsuyoshi Taji3, Takashi Takata5, Hiroki Nikawa3 "Learning in an inter-professional dental education course: Applying the World Health Organization inter-professional learning domains framework with a project-based learning approach. "
- [139] W.-F. Lee, M.-S. Chen, T.-Y. Peng, P.-C. Huang, H. Nikawa, P.-W. Peng* "Comparative analysis of the retention force and deformation of PEEK and PEKK removable partial denture clasps with different thicknesses and undercut depths. "Journal of Prosthetic Dentistry (JPD), in press (2023/12/5). doi: https://doi.org/10.1016/j.prosdent.2023.09.042
- [140] P.-W. Peng, M.-S. Chen, T.-Y. Peng, P.-C. Huang, H. Nikawa, W.-F. Lee* "In vitro study of optimal removable partial denture clasp design made from novel high-performance polyetherketoneketone. " Journal of Prosthodontic Research (JPR), 2023, accept (2023/12/17).
- [141] 二川浩樹. "プロバイオティクスの口腔への応用 "大阪府歯科衛生士会学術誌 32,2-7,2023.
- [142] 北川雅恵,田地豪,長嶺憲太郎,二川浩樹, "Lactobacillus rhamnosus L8020 タブレットの cnm 遺伝 子陽性 Streptococcus mutans 菌数に対する影響,"日本口腔検査学会雑誌 15, 9-13, 2023
- [143] 【総説】

Hiroki Nikawa, Tsuyoshi Taji, Yuichi Mine, Saiji Shimoe, Masato Kaku, Takeshi Murayama. "Innovation from Dentistry: The Inside Story From Research to Patents, Licenses, and Royalty Income," J of Oral Tissue Engin, Accepted 2023.

- [144] 二川浩樹,田地 豪, "歯科からのイノベーション 研究~特許~ライセンス~ロイヤリティ収入の裏話."日補会誌(受理)
- [145] F. Abe, A. Nakano, I. Hirata, K. Tanimoto, K. Kato, "Structure and function of engineered stromal cell-derived factor-1α", Dent. Mater. J., in press
- [146] Kato K. A. Miyauchi, H. Kagechika, "Bioengineering challenges in regenerative medicine: Biofunctional materials design. In Biomedical Engineering: Imaging Systems", Electric Devices, and Medical Materials, eds., 2024, Jenny Stanford Publishing, Singapore, in press
- [147] Narasaki, S., Noguchi, S., Urabe, T., Harada, K., Hide, I., Tanaka, S., Yanase, Y., Kajimoto, T., Uchida, K., Tsutsumi, Y.M., Sakai, N., " Identification of protein kinase C domains involved in its translocation induced by propofol, "European Journal of Pharmacology 2023 May 23;955:175806.
- [148] Yanase, Y.; Matsubara, D.; Takahagi, S.; Tanaka, A.; Ozawa, K.; Hide, M. " Basophil Characteristics as a Marker of the Pathogenesis of Chronic Spontaneous Urticaria in Relation to the Coagulation and Complement Systems. " Int. J. Mol. Sci. 2023, 24, 10320.

- [149] Izumi Hide; Hiroko Shiraki; Akihiro Masuda; Takuya Maeda; Mayuka Kumagai; Nao Kunishige; Yuhki Yanase; Kana Harada; Shigeru Tanaka; Norio Sakai. " The P2Y2 receptor mediates dying cell removal via inflammatory activated microglia. " J Pharmacol Sci. 2023 Sep;153(1):55-67.
- [150] Matsubara D, Kunieda T, Yanase Y*, Takahagi S, Uchida K, Kawaguchi T, Ishii K, Tanaka A, Ozawa K, Hide M. "Time Course of Priming Effect of TF Inducers on Synergistic TF Expression and Intra-Cellular Gap Formation of Human Vascular Endothelial Cells via the Extrinsic Coagulation Cascade. "Int J Mol Sci. 2023 Aug 3;24(15):12388.
- [151] Masataka Suehiro, Tomofumi Numata, Ryo Saito, Nozomi Yanagida, Chie Ishikawa, Kazue Uchida, Tomoko Kawaguchi, Yuhki Yanase, Yozo Ishiuji, John Mcgrath, Akio Tanaka. " Oncostatin M suppresses IL31RA expression in dorsal root ganglia and interleukin-31-induced itching. " Frontiers in Immunology. Volume 14 2023.
- [152] Sungrim Seirin-Lee, Daiki Matsubara, Yuhki Yanase, Takuma Kunieda, Shunsuke Takahagi, Michihiro Hide.
 " Mathematical-structure based Morphological Classification of Skin Eruptions and Linking to the Pathophysiological State of Chronic Spontaneous Urticaria. "Commun Med (Lond). 2023 Dec 4;3(1):171.
- [153] Soma Noguchi, Taketoshi Kajimoto, Takuya Kumamoto, Masashi Shingai, Soshi Narasaki, Tomoaki Urabe, Serika Imamura, Kana Harada, Izumi Hide, Shigeru Tanaka, Yuhki Yanase, Shun-ichi Nakamura, Yasuo M Tsutsumi, Norio Sakai. "Features and mechanisms of propofol-induced protein kinase C (PKC) translocation and activation in living cells. "Frontiers in Pharmacology. Volume 14 - 2023

Telephone, Facsimile, and E-mail 常任スタッフ連絡先 (2024年3月31日時点)

	Telephone International/Domestic 国外/国内	Facsimile International/Domestic 国外/国内	e-mail address	
Director/所長				
Prof. Akinobu Teramoto	+81-82-424-6265	+81-82-424-3499	teramo10@hiroshima-u.ac.jp	
寺本 章伸 教授	082-424-6265	082-424-3499		
Nanointegration Research Div	vision/ナノ集積科学	如究部門		
Prof. Shin-Ichiro Kuroki	+81-82-424-6267	+81-82-424-3499	skuroki@hiroshima-u.ac.jp	
黒木 伸一郎 教授	082-424-6267	082-424-3499		
Prof. Akinobu Teramoto	+81-82-424-6266	+81-82-424-3499	teramo10@hiroshima-u.ac.jp	
寺本 章伸 教授	082-424-6266	082-424-3499		
Prof. Hideki Gotoh	+81-82-424-7038	+81-82-424-3499	hdkgotoh@hiroshima-u.ac.jp	
後藤 秀樹 教授	082-424-7038	082-424-3499		
Prof. Takamaro Kikkawa	+81-82-424-7879	+81-82-424-3499	kikkawat@hiroshima-u.ac.jp	
吉川 公麿 特任教授	082-424-7879	082-424-3499		
Assoc. Prof. Anri Nakajima	+81-82-424-6274	+81-82-424-3499	anakajima@hiroshima-u.ac.jp	
中島 安理 准教授	082-424-6274	082-424-3499		
Assoc. Prof. Tetsuo Tabei	+81-82-424-6265	+81-82-424-3499	tabei@hiroshima-u.ac.jp	
田部井 哲夫 特任准教授	082-424-6265	082-424-3499		
Assist. Prof. Vuong Van Cuong	+81-82-424-6265	+81-82-424-3499	vuongvancuong@hiroshima-u.ac.jp	
ヴォーン ヴァン クォン 特任助教	082-424-6265	082-424-3499		
Assist. Prof. Tomomi Ishikawa	+81-82-424-6265	+81-82-424-3499	tomomiik@hiroshima-u.ac.jp	
石川 智己 特任助教	082-424-6265	082-424-3499		
Assist. Prof. Yoshiteru Amemiya	+81-82-424-6265	+81-82-424-3499	amemiya@hiroshima-u.ac.jp	
雨宮 嘉照 特任助教	082-424-6265	082-424-3499		
Integrated Systems Research	Division/集積シス	テム科学研究部門		
Prof. Suguru Kameda	+81-82-424-6268	+81-82-424-3499	kameda3@hiroshima-u.ac.jp	
亀田 卓 教授	082-424-6268	082-424-3499		
Assoc. Prof. Tetsushi Koide	+81-82-424-6971	+81-82-424-3499	koide@hiroshima-u.ac.jp	
小出 哲士 准教授	082-424-6971	082-424-3499		
Molecular Bioinformation Research Division/分子生命情報科学研究部門				
Prof. Masakazu lwasaka	+81-82-424-4372	+81-82-424-3499	miwamasa@hiroshima-u.ac.jp	
岩坂 正和 教授	082-424-4372	082-424-3499		
Advanced Research Infrastructure for Materials and Nanotechnology (ARIM)/マテリアル先端リサ ーチインフラ				
Prof. Shin-Ichiro Kuroki	+81-82-424-6265	+81-82-424-3499	skuroki@hiroshima-u.ac.jp	
黒木 伸一郎 教授	082-424-6265	082-424-3499		
Assoc. Prof. Tetsuo Tabei	+81-82-424-6265	+81-82-424-3499		

Research Institute for Nanodevices (RIND), Hiroshima University 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, JAPAN 広島大学ナノデバイス研究所 〒739-8527 広島県 東広島市 鏡山1丁目 4-2

082-424-6265

Tel 082-424-6265, Fax 082-424-3499 e-mail rnbs@hiroshima-u.ac.jp URL https://www.rnbs.hiroshima-u.ac.jp/

田部井 哲夫 特任准教授

082-424-3499

tabei@hiroshima-u.ac.jp

e-mail rnbs@hiroshima-u.ac.jp URL https://www.rnbs.hiroshima-u.ac.jp/

Research Institute for Nanodevices Hiroshima University

1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, JAPAN Telephone : +81-82-424-6265 (direct) Facsimile : +81-82-424-3499 広島大学 ナノデバイス研究所

〒739-8527 広島県 東広島市 鏡山1丁目 4-2 電話: 082-424-6265 ファクシミリ:082-424-3499